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Abstract 

In this paper, we study the geometry of the contact pseudo-slant submanifolds of a Sasakian manifold. We 

derive the integrability conditions of distributions in the definition of a contact pseudo-slant submanifold. The 

notions contact pseudo-slant product is defined, and the necessary and sufficient conditions for a submanifold 

to contact pseudo-slant product is given. Also, a non-trivial example is used to demonstrate that the method 

presented in this paper is effective. 
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1. Introduction  

The differential geometry of slant submanifolds has shown an increasing development since B. Y. Chen defined 

slant submanifolds in complex manifolds as a natural generalization of both the invariant and anti-invariant 

submanifolds[5]. After then, Papaghuic initiated the notion of semi-slant submanifolds as a generalization of 

slant submanifolds and CR-submanifolds[12]. Furthermore, Carriazo defined pseudo-slant submanifold with the 

name anti-slant submanifolds as a special class of bi-slant submanifolds [2, 3, 4]. Also, pseudo-slant 

submanifolds have been studied by Khan et. al. in [10]. Later, U. C. De et. al. studied and characterized pseudo-

slant submanifolds of trans-Sasakian Manifolds [6]. Recently, M. Atceken and S. Dirik also have investigated 

contact pseudo-slant submanifolds in Cosymplectic, Kenmotsu, and Sasakian space forms and gave some results 

on mixed-geodesic, totally geodesic and the induced tensor fields to be parallel [7, 8, 9]. 

In this paper, we study geometry of the contact pseudo-slant submanifolds of a Sasakian manifold. In Section 

2, we review basic formulas and definitions for a Sasakian manifold and their submanifolds. In Section 3,  we 

derive the integrability conditions of distributions in the definition of a contact pseudo-slant submanifold. The 

notions contact pseudo-slant product is defined, and the necessary and sufficient conditions for a submanifold 

to be contact pseudo-slant product is given. Also, a non-trivial example is used to demonstrate that the method 

presented in this paper is effective. 

2.  Preliminaries 

Given an odd-dimensional Riemannian manifold ( , )M g , let   be a (1,1) -type tensor field   is a unit vector 

field and   is a 1-form on M . If we have  

2 = ( ) , ( , ) = ( )X X X g X X    − +                                                                                                    (2.1) 

and  

( , ) = ( , ) ( ) ( )g X Y g X Y X Y   −                                                                                                           (2.2) 

for any vector fields ,X Y  on M , then M  is said to have an almost contact metric structure ( , , , )g    and 

it is called an almost contact metric manifold. 
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Let   denote the fundamental form 2-form in M , given by ( , ) = ( , )X Y g X Y , for any vector fields ,X Y  

on .M  If = d , then M  is said to be a contact metric manifold. Furthermore, the contact metric structure 

is called a K-contact structure if   is a Killing vector field, that is, =X X  − , for any vector field X  on M

, where   denotes the Levi-Civita connection on M . 

The structure ( , , , )g    is said to be normal if [ , ] 2 = 0d   +  , where [ , ]   is the Nijenhuis torsion 

of  . A normal contact metric manifold is called a Sasakian manifold. So every Sasakian manifold is a K-contact 

manifold. It is well-know that an almost contact metric manifold is a Sasakian if and only if  

( ) = ( , ) ( ) ,X Y g X Y Y X   −                                                                                                                      (2.3) 

for any vector fields ,X Y  on M . 

Let ( )M c  be a Sasakian space form with constant  -holomorphic sectional curvature c . Then the curvature 

tensor R  of ( )M c  is given by  

 
3

( , ) = ( ) ( , ) ( , )
4

c
R X Y Z g Y Z X g X Z Y

+
−

1
( ){ ( ) ( ) ( ) ( )

4

c
X Z Y Y Z X   

−
+ −  

                     ( , ) ( ) ( , ) ( )g X Z Y g Y Z X   + − ( , ) ( , ) 2 ( , ) }g X Z Y g Y Z X g X Y Z     + − +      (2.4) 

for any vector fields , ,X Y Z  on ( )M c . 

Now, let M  be a submanifold of an almost contact metric manifold M , we denote the induced connections 

on M  and the normal bundle T M⊥  by   and 
⊥ , respectively, then the Gauss and Weingarten formulas are 

given by  

= ( , )X XY Y h X Y  +                                                                                                                               (2.5) 

and  

= ,X V XV A X V⊥ − +                                                                                                                                (2.6) 

for any , ( )X Y TM , ( )V T M⊥ , where h  is the second fundamental form and VA  is the Weingarten 

map associated with V  as  

( , ) = ( ( , ), ).Vg A X Y g h X Y V                                                                                                                       (2.7) 

We denote the Riemannian curvature tensor of M  by R , then the Gauss equation imply  

( , ) ( , )( , ) = ( , ) ( )( , ) ( )( , ),− + +  − h Y Z h X Z X YR X Y Z R X Y Z A X A Y h Y Z h X Z                                     (2.8)  

for any , , ( )X Y Z TM . 

 The covariant derivative h  of h  is defined by 
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( )( , ) = ( , ) ( , ) ( , ),X X X Xh Y Z h Z Y h Y Z h Z Y⊥  −  −   (2.9) 

and the covariant derivative A  of A  is also defined by 

( ) = ( ) ,X V X V V XV
X

A Y A Y A Y A Y⊥
  − −                    (2.10) 

for any , ( )X Y TM   and ( ).V T M⊥  

Taking the normal component of (2.8), we reach at equation of Codazzi  

( ( , ) ) = ( )( , ) ( )( , ).X YR X Y Z h Y Z h X Z⊥  −                                                                                           (2.11) 

If ( ( , ) ) = 0R X Y Z ⊥
, then submanifold is said to be curvature-invariant. 

The Ricci equation is given by  

( ( , ) , ) = ( ( , ) , ) ([ , ] , ),V Ug R X Y V U g R X Y U V g A A X Y⊥ −  (2.12) 

for any , ( )X Y TM  and , ( )U V T M⊥ . If = 0R⊥
, then  the normal connection of the M  is called 

flat. 

Furthermore, for any ( )X TM , we can write  

= ,X TX NX +                                                                                                                                       (2.13) 

where TX  and NX  denote the tangential and normal components of X , respectively. Similarly, for 

( )V T M⊥ , V  also can be written  

= ,V BV CV +                                                                                                                                        (2.14) 

where BV  and CV  denote, respectively, the tangential and normal components of V . 

Taking into account (2.4) and (2.12), we have  

 ( ( , ) , ) = ( , , )V Ug R X Y V U g A A X Y
⊥ 1

( ){ ( , ) ( , )
4

c
g X V g U Y 

−
+  

          ( , ) ( , )g Y V g X U − 2 ( , ) ( , )},g X Y g V U +                                                   (2.15)                   

                   

for any , ( )X Y TM  and , ( )V U T M⊥ . 

By using (2.4) and (2.8), the Riemannian curvature tensor R  of an immersed submanifold M  of a Sasakian 

space form ( )M c  is given by  

3
( , ) = ( ){ ( , ) ( , ) }

4

c
R X Y Z g Y Z X g X Z Y

+
−

1
( ){ ( ) ( ) ( ) ( )

4

c
X Z Y Y Z X   

−
+ −  
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                      ( ) ( , ) ( ) ( , )Y g X Z X g Y Z   + − ( , ) ( , ) 2 ( , ) }g X Z Y g Y Z X g X Y Z     + − +       

                      ( , ) ( , )h Y Z h X ZA X A Y+ − ( )( , ) ( )( , ).Y Xh X Z h Y Z+  −   (2.16) 

The normal part of (2.16), we have  

1
( )( , ) ( )( , ) = ( ){ ( , )

4
X Y

c
h Y Z h X Z g X TZ NY

−
 −  ( , ) 2 ( , ) }g Y TZ NX g X TY NZ− +                                                      

By using (2.1), (2.13), (2.14) and taking into account of   being tangent to M , we get  

2 = , = 0,T BN I NT CN + − +  +                                                                                                     (2.18) 

and  

2= 0, = .TB BC NB C I+ + −                                                                                                                     (2.19) 

Furthermore, the covariant derivatives of the tensor field T , N , B  and C  are, respectively, defined by  

( ) =X X XT Y TY T Y  −                                                                                                                             (2.20) 

( ) =X X XN Y NY N Y⊥  −                                                                                                                          (2.21) 

( ) =X X XB V BV B V⊥  −                                                                                                                           (2.22) 

and  

( ) = ⊥ ⊥  − X X XC V CV C V                                                                                                                         (2.23) 

for any , ( )X Y TM  and ( )V T M⊥ . 

By using (2.4), (2.5), (2.6) and (2.13), we can easily to see that  

( ) = ( , ) ( , ) ( ) ,X NYT Y A X Bh X Y g X Y Y X  + + −              (2.24) 

 ( ) = ( , ) ( , ),X N Y h X TY Ch X Y − +                                                                                                        (2.25)                                  

    ( ) = ,X CV VB V A X TA X −                                                                                                                      (2.26)                                                                                          

   ( ) = ( , )X VC V NA X h X BV − −                                                                                                              (2.27) 

and for any , ( )X Y TM  and ( )V T M⊥ . 

By using (2.25) and (2.26), we can easily to see that 

(( ) , ) = ( ( , ), ) ( ( , ), )Xg N Y V g h X TY V g Ch X Y V − +  
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                           = ( , ) ( ( , ), )Vg A X TY g h X Y CV− −  

 = ( , ) ( , )V CVg TA X Y g A X Y−  

 = ( , )V CVg TA X A X Y−  

 = ( , ) = (( ) , )CV V Xg A X TA X Y g B V Y− − −   

thus we have 

(( ) , ) = (( ) , ). − X Xg N Y V g B V Y                                                                                                          (2.28) 

Since   is tangent to M , making use of (2.5), (2.6), (2.7) and (2.13), we infer that  

= , ( , ) = , = ,X VTX h X NX A BV   − −                                                                                            (2.29) 

for all ( )V T M⊥  and ( )X TM . 

Definition 2.1 Let M be a submanifold of an almost contact metric manifold ( , , , , )M g   . Then M is said to 

be a contact slant submanifold if the angle ( )X  between X  and ( )MT p  is constant at any point p M  for 

any X  linearly independent of  . Thus the invariant and anti-invariant submanifolds are special class of slant 

submanifolds with slant angles = 0  and =
2


 , respectively. If the slant angle   is neither zero nor 

2


, then 

slant submanifold is said to be proper contact slant submanifold. The slant submanifolds of an almost contact 

metric manifold, the following theorem is well known.[11]  

Theorem 2.2 Let M  be a submanifold of an almost contact metric manifold M  such that ( )TM  . M  is 

a contact slant submanifold if and only if there exists a constant (0,1)  such that  

2 = ( )  − + T I                                                                                                                                   (2.30) 

Furthermore, if   is slant angle of M , then it satisfies 2= cos  [3].  

As a consequence of the above Theorem and (2.18), we have the following relations;  

2( , ) = { ( , ) ( ) ( )},cos   −g TX TY g X Y X Y  (2.31) 

 
2( , ) = { ( , ) ( ) ( )},sing NX NY g X Y X Y  −  (2.32) 

 
2= ( ).sinBN I  − +   (2.33) 

For a slant submanifold M  of an almost contact metric manifold M , the normal bundle T M⊥  of M  is 

decomposable as  

= ( ) ,T M N TM ⊥   

where   is the invariant normal subbundle with respect to  . 
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3.  Some Result on Contact Pseudo-Slant Submanifolds of a Sasakian Manifold 

In this section, we study contact pseudo-slant submanifolds in a Sasakian manifold and we give some 

characterization results. 

Definition 3.1 Let M  be a submanifold of a Sasakian manifold ( , , , )M g   . We say that M  is a contact 

pseudo-slant submanifold if there exists a pair of orthogonal distributions D
 and D⊥

 on M  such that 

 i.) the distribution D⊥
 is anti-invariant, i.e., ( ) ,D T M ⊥ ⊥  

 ii.) the distribution D
 is slant with slant angle  , 

 iii.) the tangent space TM  admits the orthogonal direct decomposition    

        = ,TM D D⊥   ( )TM   [10].  

If we denote the dimensions of D⊥
 and D

 by n  and m , respectively, the we have    

the following possible cases; 

 i.) if = 0n , then M  is a slant submanifold, 

 ii.) if = 0m , then M  is an anti-invariant submanifold, 

 iii.) if 0nm  , = 0 , then M  is a contact CR-submanifold. 

For a pseudo-slant submanifold M  of a Sasakian manifold M , the normal bundle T M⊥  of a pseudo-slant 

submanifold M  is decomposable as  

 = ( ) ( ) , ( ) ( ).T M D N D D N D   ⊥ ⊥ ⊥  ⊥  (3.1) 

Theorem 3.2 Let M  be a contact pseudo-slant submanifold of a Sasakian manifold M . Then anti-invariant 

distribution D⊥
 is always integrable.  

Proof  For any , ( )Y Z D⊥ , we have  

                     = ( , )Z ZY Y g Z Y    +  

     = ( , ) ( , ) ( , ) ,NY Z Z ZA Z NY T Y N Y Bh Z Y Ch Z Y g Z Y ⊥− +  +  + + +  

which implies that  

   = ( , ) ( , ) .NY ZA Z T Y Bh Y Z g Z Y −  + +  

Thus we have  

  [ , ] = .NZ NYT Y Z A Y A Z−                                                                                                                   (3.2) 
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Since the ambient manifold M  is Sasakian, we have  

( , ) = ( ( , ), ) ( ( , ), )NZ NYg A Y A Z U g h Y U NZ g h Z U NY− −  

        = ( ( , ), ) ( , )Ug h Y U NZ g Z NY−   

        = ( ( , ), ) ( , )Ug h Y U NZ g Y Z+   

        = ( ( , ), ) (( ) , )U Ug h Y U NZ g Y Z Z +  +   

        = ( ( , ), ) ( , )Ug h Y U NZ g Z Z+   

             ( ( , ) ( ) , )g g U Y Y U Z + −  

         = ( ( , ), ) ( , )Ug h Y U NZ g Y Z−   

         = ( ( , ), ) ( ( , ), ) = 0,g h Y U NZ g h U Y NZ−  

for any ( )U TM , that is,  

= .NZ NYA Y A Z                                                                                                                                                 (3.3) 

From (3.2) and (3.3), we conclude that [ , ] = 0T Y Z i.e., [ , ] ( )Y Z D⊥ . The proof is completes.  

Theorem 3.3 Let M  be contact pseudo-slant submanifold of a Sasakian manifold M . Then the slant 

distribution D
 is integrable if and only if  

( , ) = ( , ),CNY NZ CNX NZg A Z TA Y X g A Z TA X Y+ +  

for any , ( )X Y D  and ( )Z D⊥ .  

Proof  By using (2.2) and (2.3), we have  

([ , ], ) = ( , ) ( , )X Yg X Y Z g Y Z g X Z −   

                       = ( , ) ( , )Y Xg Z X g Z Y −   

                       = ( , ) ( , )Y Xg Z X g Z Y    −   

                       = ( ( ) , )Y Yg Z Z X   −  ( ( ) , )X Xg Z Z Y  −  −   

                       = ( , ) ( ( . ) ( ) , )Yg Z X g g Y Z Z Y X     − +  

                          ( , ) ( ( . ) ( ) , ).    −  + +Xg Z Y g g X Z Z X Y  

Thus, from  the equations numbered (2.5), (2.6), (2.7), (2.13) and (2.33)  
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([ , ], ) = ( , ) ( , )Y Yg X Y Z g Z TX g Z NX  +   ( , ) ( , )X Xg Z TY g Z NY −  −   

                       = ( , ) ( , )Z Zg A TX Y g A TY X − + ( , ) ( , )Z Yg X NY g Z NX +  −   

                       = ( , ) ( , )Z Zg A TY X g A TX Y − ( , ) ( , )X Yg Z BNY g Z BNX+  −                                          

                          ( , ) ( , )X Yg Z CNY g Z CNX+  −                            

 2= ( , ) ( , )sinZ Z Xg A TY TA Y X g Z Y  + −   

 
2 ( , ) ( ( , ), ) ( ( , ), )sin Yg Z X g h X Z CNY g h Y Z CNX+  + −  

                         2= ( , ) ([ , ], )sinZ Zg TA Y A TY X g X Y Z  + + ( , ),CNY CNXg A X A Y Z+ −  

for any , ( )X Y D  and ( )Z D⊥ . Consequently, we reach at  

2 ([ , ], ) = ( , ) ( , ),cos Z Z CNY CNXg X Y Z g TA Y A TY X g A X A Y Z  + + −  

which proves our assertion.  

Definition 3.4  Let M  be a contact pseudo-slant submanifold of a Sasakian manifold M . M  is said to be 

contact pseudo-slant product if the distributions D⊥
 and D

 are totally geodesic in M . 

Theorem 3.5  Let M  be a proper contact pseudo-slant submanifold of a Sasakian manifold M . If the tensor 

field N  is parallel, then M  is a contact pseudo-slant product.  

Proof N  is parallel if and only if B  is parallel, from (2.28) and (2.26), we have 

= 0CV VA X TA X−                                                                                                                                         (3.4) 

taking V  =  NZ   in equation (3.4) and from (2.18), we get 

= 0, ( ), ( ).NZTA X X TM Z D⊥   

This implies that ( )ZA X D

⊥  and ( , ) = 0Bh X Z . The proof is completes.  

Theorem 3.6 Let M  be a contact pseudo-slant submanifold of a Sasakian space form ( )M c . M  is either 

anti-invariant submanifold or M  is flat if N  is parallel.  

Proof Since N  is parallel, we can easily to see that  

  ( , ) = ( , ) = ( , ),h TX Y Ch X Y h X TY  

Thus we have 

 ( ( , ), ) = ( ( , ), )g h TX Y V g h X TY V = ( , ) = ( , ) = ( , )V V Vg A TX Y g A X TY g TA X Y−  
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which is equivalent to  

= 0,V VTA X A TX+                                                                                                                         (3.5) 

for any , ( )X Y TM  and ( )V T M⊥ . From (3.5), we have  

 ( , ) = ( , ) = ( , )V V Vg A TX BU g A X TBU g A X BCU− = ( , ) = 0,Vg NA X CU−                                      (3.6)                

for any vector fields ,U V  normal to M . Taking the covariant derivative of (3.6), for ( )Y TM , we obtain  

  ( , ) ( , ) = 0.Y V V Yg A TX BU g A TX BU +   

This means that  

0 = (( ) , )Y V V YV
Y

g A TX A TX A TX BU⊥
 + +   ( ,( ) ).V Y Yg A TX B U B U⊥+  +   

Taking into account (2.28) and (3.6), we reach at  

   (( ) {( ) }, ) = 0,Y V V Y Yg A TX A T X T X BU +  +   

from which  

(( ) , ) ( { ( , ) ( , ) ( ) }, ) = 0,Y V V NXg A TX BU g A A Y Bh X Y g X Y X Y BU  + + + −  

or,  

(( ) , ) ( , ) ( , ( , )) = 0.Y V V NX Vg A TX BU g A BU A Y g A BU Bh X Y + +  

This implies that  

(( )( , ), ) = (( ) , )TY TY Vg h TX BU V g A TX BU   = ( , )V NXg A BU A TY− ( , ( , )).Vg A BU Bh TY X−               

Thus we conclude that  

  (( )( , ) ( )( , ), ) = ( , )TX TY V NXg h TY BU h TX BU V g A BU A TY −   

                                                  ( , )V NYg A BU A TX−  

                                                 = ( , )V NX NYg A BU A TY TA X−  

                                                 = ( , )V NXg A A TY BU  

                                                   ( , )V NYg A TA X BU−  

                                                 = ( , )V NXg A TA Y BU =0. (3.7) 

On the other hand, form the Codazzi equation, we have  
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21
(( )( , ) ( )( , ), ) = ( ){ ( , ) ( , )

4
TX TY

c
g h TY BU h TX BU V g T Y BV g NX U

−
 −   

                                               
2( , ) ( , )g T X BV g NY U−  

                                                
22 ( , ) ( , )}g TX T Y g NBV U+  

                                               
2 1

= ( ){ ( , ) ( , )cos
4

c
g Y BV g NX U

−
−  

                                                  ( , ) ( , )g X BV g NY U−  (3.8) 

                                                  2 ( , ) ( , )}.g TX Y g NBV U+  

In (3.8), taking , ( )X Y D  and = = ( )U V NZ T M⊥  for ( )Z D⊥ , and corresponding (3.7) and 

(3.8), we get  

2 1
( ) ( , ) ( , ) = 0.cos

2

c
g TX Y g Z Z

−
 

This proves our assertion.  

Example 3.9 Let M  be a submanifold of 
9R  defined by the following equation 

( , , , , ) = (3 sin , cos , 2 sin , cos , cos ,cos , sin , sin , ).u v w t z u v u v w t t w t t z    − − − −  

We can easily to see that the tangent bundle of M  is spanned by the tangent vectors  

1 2 5

1 2 1 2

= 3sin 2sin , = cos cos , = = .e e e
x x y y z

    
    
− − +

    
 

3 4

3 4 3 3 4 4

= cos sin , = sin sin cos cos .e t t e w t t w t t
x x x y x y

     
− + − + −

     
 

For the almost contact metric structure   of 
9R , whose coordinate systems 1( ,x  1,y  2 ,x  2 ,y  3 ,x  3 ,y  4 ,x  

4 ,y  )z , choosing 

( ) = , ( ) = ,1 , 4
i i j j

i j
x y y x

 
   

−  
   

 

then we have  

1 2 3

1 2 1 2 3 4

= 3sin 2sin , = cos cos , = cos sin ,e e e t t
y y x x y y

      
     
− − − +

     
 

and 
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4

3 3 4 4

= sin sin cos cos .e w t t w t t
y x y x


   
+ + +

   
 

By direct calculations, we can infer 
1 2= { , }D span e e  is a slant distribution with slant angle 

1 2

2 2
1 2

( , ) 5sin .cos 5 26
cos = = =

2613 2sin cos

g e e

e e

  


  
 

5 26
= cos( )

26
arc . Since

3( , ) = 0,ig e e  =1,2,4,5i  

and 4( , ) = 0,je e  =1,2,3,5j  are orthogonal to M , 3 4 5= { , , }D span e e e⊥
 is an anti-invariant 

distribution. Thus M  is a 5 -dimensional proper contact pseudo-slant submanifold of 
9R  with it’s usual 

almost contact metric structure. 

Conclusions and Remarks 

In this paper, we study geometry of the contact pseudo-slant submanifolds of a Sasakian manifold. We derive 

the integrability conditions of distributions in the definition of a contact pseudo-slant submanifold. The notions 

contact pseudo-slant product is defined and the necessary and sufficient conditions for a submanifold to be 

contact pseudo-slant product is given. Also, an non-trivial example is used to demonstrate that the method 

presented in this paper is effective . It is well known that open problems are so interesting in this area, especially 

for almost contact structures. 
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