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ABSTRACT

This paper applied and analyzes full-discrete weak Galerkin (WG) finite element method for non steady two dimensional
convection-diffusion problems on conforming polygon. We approximate the time derivative by backward finite difference
method and the elliptic form by WG finite element method. The main idea of WG finite element methods is the use of weak
functions and their corresponding discrete weak derivatives in standard weak form of the model problem. The theoretical

evidence proved that the error estimate in L2 -norm, the properties of the bilinear form a(u,v), (v-elliptic and continuity),
stability, and the energy conservation law.
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1. Introduction:

Weak Galerkin (WG) finite element methods refer to general finite element methods for partial differential equations
(PDEs). The novel idea of WG finite element methods is on the use of weak functions, weak gradients and their
approximations results in a new concept called discrete weak gradients which is expected to play important roles in
numerical methods for PDEs [6]. The key to WG finite element methods is the use of a discrete weak gradients operator
which is defined and computed by solving inexpensive problems locally on each element. The fundamental difference
between the weak Galerkin finite element method and other existing methods, such as Discontinuous Galerkin Finite
Element Method ([1, 3, 17]) and the Finite Volume Method ([4, 7, 18)), is used of weak function and weak gradient in the
design of numerical scheme based on existing weak forms for the underlying PDEs.

WG finite element methods were first introduced in [6] for solving steady second order elliptic problem and later on in [8]
for shape regular polytopal meshes. The method has been successfully applied to elliptic interface problems [10],
Helmholtz equations [13], and biharmonic equations [11, 12], in this paper, we applied the WG finite element methods for

non steady diffusion convection problem and proved that the error estimate in L2 -norm, the elliptic property, and the
energy conservation law. This paper is organized as follows: Section 2 is devoted to a description some preliminaries and
notations, In section 3 we show the Convection-Diffusion Problem. The weak function the weak gradient and the weak
Galerkin method. In section 4 we discuses the full-discrete weak Galerkin method. In section 5 we proved the energy
conservation law of WG finite element method. The error analysis for Semi- discrete weak Galerkin finite element method
proved in section 6.

2. Preliminaries and Notations:

Let D be any open and bounded domain in RY (d =2). We use the standard definition for the Sobolev space H*(D)and
their associated inner products (.-); p norms|{, ,, and semi-norms|| , for anys>0 [5, 14]. For example, for any

integers > 0, the semi-norm |{_  is given by

1

|u|s,D = ZH‘aa”‘de 2‘
\

al=sp
With the usual notation,
a=(a,a,).le| = +ay, 0% =0%0%

X X!

The Sobolev norm ||||S o is given by,
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The space H (D) coincides with L2(D), for which the norm and the inner product are denoted by Hy . and (o

respectively. When D =Q , we shall drop the Subscript D in the norm and inner product notation. The space H(div;D) is
defined as the set of vector-valued functions on D which, together with their divergence, are square integrable, i.e.,

H(div,D)={u:u e[LZ(D)]d,V-u eL2(D)},

The norm in H(div; D) is defined by,

1
H@ivD) 2D ) 2D
o (ul v -l

Definition 2.1 (Bochner Space [1]): Let X be a Banach space with anorm [, and a semi- norm|{, . Then
define:

C(0,TI;X)={v:[0,T]> X,continuous||v||c([0T]_X) = S[gg]"\’"x < oo}
Y te[o,

T
L2(0,T; X) ={v:(0,T) -, strongIyneasurable||v||i2(0T,x) =I||v||§(dt< oo},
0

And

2
dt < oo}
X

Tr
H"(0,T;X)={ve L2(0,T; X);"VHZH’(O,T;X) ZIZ
0 a=0

0%
Ed

Moreover ,

.
2 2
|v|C([O,T];X) :t:[lél'?r]"V"X’|V|L2(0,T;X) = _(["V"xdt ,

Definition 2.2 [2]: Young's inequality ( ¢ —inequality) is defined by

absia2 +£b2,
2¢ 2

for a and b are real numbersand £>0.
Definition 2.3 [15]: In a Hilbert space V the Cauchy-Schwartz inequality which is defined by,
| v) <[ulM

foreach u and veV.

3. The Convection-Diffusion Problem:

We consider the non- state diffusion-convection problem,

%uf/IAu+b-Vu=f, Qx(0,T)=0Qr 1)
Subject to
U|5Q><(O,T) =U,, 0N 02 and u(x,0)=u’(x) xeQ (2)
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In a domain Q = R?with boundary 6Q, where x = (X1,X9) and f =(x,t), where Q a polygonal domain in R?, Vu denotes
the gradient of the function u=u(x), and V is known as the gradient operator. And A is diffusion coefficient, b = (b;,b,)is
a velocity vector.

For simplicity, let the function f in (1) be locally integrable in Q . We shall consider solutions of (1) with a non-
1

homogeneous Dirichlet boundary condition u(0) =up, where up e HE(aQ) is a function defined on the boundary of Q.

Here Hl(Q) is the Sobolev space consisting of functions which, together with their gradients, are square integrable
1

overQ, H2(6Q) is the trace of Hl(Q) on the boundary of Q, The standard weak form for seeks u e Hl(Q). Such that

u=up on o0Q.

(Ug, V) + (AVU, WV) + (bu, W) = (f,V), Wv e H3(Q). (3)

3.1 THE WEAK GRADIENT:

The main idea of weak Galerkin methods is the use of discrete weak derivatives in the place of strong derivatives in the
variational form for the underlying partial differential equations. The weak gradient operator will then be employed to
discretization the problem (3) through the use of a discrete weak gradient operator as building bricks [6]. The discrete
weak gradient is given by approximating the weak gradient operator with piecewise polynomial functions. To introduced
the weak gradient operator;

Firstly we define the weak function. Let K be any polygonal domain with interior K°and boundary K . A weak function
1

on the region K refers to a vector-valued function v={vy,vy} such that v, el®(K) and Vp eHE(aK) .The first
component v, can be understood as the value of v in the interior of K, and the second component v, representsv on
the boundary of K . Denote by W(K) the space of weak functions on K [9]; i.e.

1
W (K) ={v = {Up, Yo}, Vo € L2 (K),Vp € H2(3K)} @
Secondly, we define the weak gradient, for any veW(K), the weak gradient of V is defined as a linear functional VWV
in the dual space of H(div;K) whose action on each q e H(div;K) is given by
(Vwv,a), =—.[VOV-qu+ J.qu~nds, (5)
K K
where n is the outward normal direction to oK .

The discrete weak gradient operator was defined by approximating V,v in a polynomial subspace of the dual of
H(div; K) . More precisely, for any non-negative integer r >0, denote by P,(K) the set of polynomials on K with degree

no more than r. Let V(K,r) c [Pr(K)]2 be a subspace of the space of vector-valued polynomials of degree r . The discrete
weak gradient operator, denoted by V, is defined as the unique polynomial V4v eV (K,r) c H(div,K) satisfying the
following equation:

(Vdv,q)z—ijV~qu+ Iqu-nds, vgeV(K,r). (6)
K oK

3.2 WEAK GALERKIN FINITE ELEMENT SPACE:

Let T, be a triangular partition of the domain Q with 6T as its boundary. For eachT €Ty, Denote by P; (TO) the set of
polynomials on T with degree no more than j , and P,(dT) the set of polynomials on T with degree no more than 7. A

discrete weak function v={vg,vy} on T refers to a weak function v={vy,v,} such that vy e Pj(TO) and v, € P,(0T) with
j=0 and ¢ >0. Denote this space by W(T, j,?) ,i.e.,
W(T, j.0) ={v ={vo. %3} : Vg € Pj(T°). v € P,(OT)}.

The corresponding finite element space would be defined by patching W(T, j,¢) over all the trianglesT €Tj,. In other
words; the weak finite element space is given by
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Sh(J ) =y ={Vo Yo} {¥p. Yoy €W(T, 1,0, 7T €Ty} @)

Denote by S S (j, ¢) the subspace of S, (j,#) with vanishing boundary values on 6Q ; i.e.

SP(J, ) =4v =4V, Yo} € S (J. ) Vo r oy =0.¥T €Th}- ®

According to (6) for eachv ={vy,v,} € Sy (].¢), the discrete weak gradient of v, on each element T is given by the
following equation:

(Vgv,o)1 = —J.vov'da+ Iqu -nds, vqeV(T,r) 9)
T ar

For each elementT €T,, denote by Q, the L2 -projection from Lz(l') to Pj(l'o) and by Q, the LZ(I') projection from
1

= o
H2(T) to P,(eT). Denote by R, the L2 -projection of [LZ(T)] onto the local discrete gradient space [Pr(K)]z. Let

V= Hl(Q) .We define a projection operator Qy, :V — Sy, (j,¢) so that on each element T T,

Qv ={Qov,QeV} W ={Vo,vp}eW(T, ], 0). (10)

Lemma 3.2.1: Let Q, and R, be the L?-projection operator defined in previous sections. Then, on each
elementT eT,,, we have the following commutative property

Va(@Quu) =Ry(Vu),  vueH'(T) (11)

Proof: According to the definition of V4, the discrete weak gradient function V4(Quu) is given by the following
equation:

(Vg (Qnu). Q) :—j(Qou)v-qdn j(Qbu)q-nda Vg eV (T,n). (12)
T oT

Since Q0 and Q, are L2 -projection operators, then the right-hand side of (12) is given by;

—I(Qou)V-da+ I(Qbu)q -nds= —IuV-da+ qu~ nds
T ar T ar

- j(w) .qdT = j Ry (Vu) - qdT
T T

This implies the desired identity (11).

One can also define the projection 7, be the usual projection operator in the Dirichlet finite element method such that
7nq e H(T,r) ,andoneachT T, one has z,q eV (T,r) and satisfying.

0
(V-q,vy)r = (7,0, V, V)1, W, € pj(T ) (13)
The following result is based on the above property of zy, .

Lemma 3.2.2 [6]: Forany qeH(div,K) , we have

D VAo = D ma Var,  W={ig.vp}e SR 0. (14)

TeT, TeT,
For any u,v e S, (j,¢) we introduce the following bilinear form

a(u,v) =(AvVq4u,V4v) — (bug,Vyv) , (15)
where
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(/Wd U,VdV) = JAlVdU 'VdVdQ,
Q

(bug, VgV) :Ibuo VvdQ..
Q

4. FULL-DISCRETE WEAK GALERKIN FINITE ELEMENT METHOD [15]:

We now turn our attention to some discrete time weak Galerkin procedure. We introduce a time step k and the time
levelst =t, =nk . Where n is a nonnegative integer , and denote by U" =U[ €S,,(j,#) the approximation of u(t,) to
be determined .The backward Euler weak Galerkin method is define by a backward difference equation , if
ap - Ui —kuh“‘l)

(@1 V) + (AV U, Vgv) — (bUF Y v) = (F(ty) Vo). W =g, vp} e S2(j.0) (16)
n_nd
(B0 )+ (94UR V) - (BUB V) = (1 ) vo)

(Uf,vo) — (U], vo) +K(AV U, Vgv) —k(bUG, Vgv) = K(f (t), Vo)

(UR Vo) +K(AV4UR, VgVv) —k(bUgG, Vgv) = UR™ +kf (ta).Vo), WV ={Vo,Vp} €SP (i, 0)

4.1 Properties of the bilinear form a(u, ,V) :[2]

Let V be a Hilbert space with scalar product (.-)y,(V =H?*(D)) , and corresponding norm ||U||H1(D) . Suppose that

a(uyn,v) is abilinear formon V xV . We prove the properties of the bilinear form (V- elliptic and continuity).

Lemma 4.1 (continuity): A bilinear form defined on V space equipped with norm [}, is continuous if there is a
positive constantC > 0, such that

aUp,v) < C“U h “1 oMo

Proof: By using Cauchy —Schwarz inequality in equation (16), we have

|a(U,'1‘ ,v)| - |(/1vdu,':,vdv) 7(bU8,Vdv)|

<oV aUr

(K)‘

(D) Vav| 12(D) +[b] L“°(K)“U8 (D) "VdV"LZ(D)

< cl{ﬂvdu,?

Ug

N L0 T T F Y

2 2 2 2
Scl\/“vdu‘r‘] I L ¥ ey + Voo

1
22 VoMl

2
Uo

2
scl\/“vdu,? o

L*(D) +‘

(D)

<clus

Moo
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Where, C=min{|] ..y, [b] - )}

Lemma 4.2 (V-elliptic): Let U] be the solution of equation (16) then there exist a positive constanta >0,
aUM,u) > a“u"”Z
n:Un) = aUn

Proof: Lety=|j| 1=k be the L™ -norm of the coefficient 2, put v =Uy} in equation (16), we have

Ky’
a(UR,Up) = (AVqUR,VaUR) - (bUg, V4UR) 17

Now, by using Cauchy —Schwarz inequality

[aUR U =|(Av4UR, VU - (BUS,
|a(u,’3, s|(wuﬁ, n +|(bu{,‘,
by & -inequality in the second term.
bug Uy < Elue 2 lvqull’ 18
<— + —
‘( 0:Vd 0l 2oy 2“ anll2 o) (18)
Substituting (18) into (17), we have
b2 2 P 2
aU UM = “V up ‘U” +—“v up
‘( h» 7|Vd¥n LZ(D) 261 02y " 21N 9N 2 (py
£ nl? b2 nll?
>(+Z “v U ‘u
i 2) d=h LZ(D) 2¢1 0 L2(D)
> (v ul ‘U”
a(“ d-h L2(D) 0 LZ(D))
2
> a|Up
a‘ Mo
. e b?
Where, a =min{(y +=),—}
2" 2¢
Theorem (stability): There exist a constant 8 independent of h such that,
N
2 2
N n 2
Jus 12(D) ol Sk;"f(t“)"Lz(D)
Proof: choose v=U]{ in equation (16), we gat
URUM = U UR) +k(AVqUR, VaUR) —k(bUG, V4UR) = K(f (t,).Ug) (19)
By Cauchy-Schwarz inequality and using the fact that of the first term, we have
2
un Ul -uitun)=jup u“ 20
Up,Up)-WUp—Uyp) “ LZ(D) “ LZ(D) M2y (20)

By the V-elliptic of the two terms, we have.
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2

AV4UD, VU0 > “V U 21
(dhdh)adhLz(D) (21)
Using ¢ -inequality, we get
(bUq,V u”)<ﬁ‘u" ? +f”v upl’ 22)
RSP hal EITPY M MEIT)
Substituting (20), (21) and (22) in (19), we have
2 1y nal? 1 2 kb? 2 ke 2
un ——‘U" 1 ——“U"“+ka“v up +—“U” +—“ up <K||f(t “u"
‘ Moy 200" ey 20N ey T 2e 170y T2 1M 9T M2 (p) If Ve
1 nf2 1 na nll2 kbZ | 12 ke nll2 Kool k 2
—[U -=|U ka|V 4U —_— —[VqU <—|U —|f(t
2| h L2(D) 2| h |+ cx“ dYh LZ(D)+ 25| 0 LZ(D)+ > || dYh L2(D) 2| 0 LZ(D)+2|| (n)"Lz(D)
2 2 2 2 2
n |yt n n 2 _ep2lhyn
|Uh (D) |Uh LZ(D)+k'B||VdUh LZ(D)Sk|U0 LZ(D)+k||f(tn)"|—2(D) kb |U° L*(D)
Where f=2a+¢ &=1, M=b?-1
2 2 2 2
U —‘U"‘l M‘U" <K|ft
‘ Mz 1M iz Oll2(py If )l
So that by summation
NI ozl k , f(t)|°
<
Jus et nz_l:“Uo o S nz_ll" t)l2 o

5. ENERGY CONSERVATION OF WEAK GALERKIN:

Theorem (5.1): The numerical solution of equation (16) satisfies the energy conservation law.

IéLJQdQ:If(tn)dQ
Q Q

Proof: We chose a test function v={vy,v, =0}so that vy =1 on T and v, =0 elsewhere .After integrating overT , we

have

j AV UDY gvdT :deu,?vme —0
T T

The second term of equation,

IbUSVdVdT - IbUSledT -0
T T

hence from equation (16) we get,
ZJ-EUQdT - ij(tn)dT
TelyT Tel,T

Then,

j&JﬁdQ:If(tn)dQ
Q Q

6. Error analysis for Full- discrete weak Galerkin Finite Element Method:

In this section we show that the theoretical analysis of error between the exact solution of equation (3) and the weak
Galerkin approximation (16) by using the L2 -projection Quu of the exact solution and 7, be the usual projection define
in (13)
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Lemma 6.1: For ueH¥"(Q) with r >0 . We have
o0 (291) = AV Q)] 2y < OF [,
Proof: since from (11) we have V4 (Quu) = R, (Vu) , then

7 (AVU) = 2V4 (QuU)] 2 b = 72 (AVU) = ARy (VL) 2 )

Now, addition and subtraction (AVu) and by using the triangle inequality we have

|7n (AVU) = 2VU + AVU = AR(VU)| 2 5y < 720 (AVU) = AVU]| 2 5 +[AVU = AR(VU)] 2

(D) (D) (D)

<CyN VU 2 g + Con" VU 2

(D) (D)

<Ch™ull,.,

Theorem 9.1: Let ue H*"(Q) and U be the solution of (15) and U{' be the weak Galerkin approximation of equation

(16). Then there exists a constant C such that.

up —u”

tn
oy < T K Jl 09
0

Proof: since u(t,) satisfies, u(t,) =u",
Let

Ul —u"=U -Quu" +Quu" —u"
Urr]m_un =6,n_‘_pn
Where, p" =Quu" -u", 0" =U{ -Quu"

AT <le" +|lp" 23
h (D) P (23)

L2(D) ‘

‘u

L*(D)
From [19] we have

n

12

To estimate @, from equation (15) and lemma (3.2.2), we have

oy S “Hul,,, (24)

(@Qnu" Vo) + (7 (AVU"), Vgv) — (7, (0u"), Vgv) = (f (tn), Vo).

Now, addition and subtraction a(Q,u",v) = (AV4(Quu™),V4Vv) — (b(Qou"),V4Vv) on the left hand side of the above equation
and then using (13), we have

Q" Vo) + (AV4 (Qnu"), Va¥) ~(B(Qou"), V) +
(7 (AVU") = ARy (VU"), V gv) = (7, (bu™) =b(Qou"), V gv) = (f (t), Vo)
Combining equation (16) with the above equation, we have
AUR ~Quu" vo) + (AVg (UR ~Qpu"), Vgv) ~ (b(UG ~Quu"), VgV) =
(uf! —au" vg) + (p (AVU") = AR, (VU"), V¢v) — (7 (bu") ~b(Qou™), V g )
Since 9" =U| —Quu", we have

(0" o) +(AV40" ,Vqv) — (UG —Qnu"), Vgv) = (uf —au" vg) +
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(77n (AVU"™) = AR (VU"), V gv) — (7, (bu™) = b(Qou"), V¢ )
Use v=6" in the error equation, we obtain

O", 0™ +(AV46",V46™) — (bUF —Quu™), V4™ = ! —au", 6™

+ (72 (AVU") = AR, (VU"), V4 0") = (77, (bu"™) —=b(Qou"), V4 6") (25)
Let
I =ul —au",
12 =7, (AVU") = AR, (Vu™),
15 =7, (bu™) —b(Qou") .
We have

A" ,0") +(AV40",V46™) — (bUJ —Quu"), V46" =

(7,60M)+(12,V40M) +(13,V460")

( 0™M)+(AV40",V40") - (bUg —Qpu"), V40" =

(gn , en—l)
k

(7,0M)+(12,V40™) +(13,V460")

-1
(Lkgn),e”)+a(9”,0”)=(I1”,0“)+(|Q,Vd0“)+(|§,vd0”)

By V-elliptic of the bilinear form and Cauchy-Schwarz inequality and ¢ -inequality, we obtain

n 2 2

— (0", 0") + ak||[V 40" =k[1! n
L2(D) ( ) “ d L%(D) ! L2(D) L2(D)
+k(I7 V40" +kI1§ V46"
“ 2 LZ(D)‘ 4 liz(py 3 LZ(D)‘ ¥ 2oy
Using here the fact that.
2 2 1i a2 1 2
n +akllv 0" _~|lpn-1 _~|lgn
L?(D) “ d (D) 2 L2(p) 2 L2(D)
<K' o" +k{I3 V40" +k{13 V40"
el lep) ” 2 LZ(D)‘ 4% 2oy 8 LZ(D)‘ 47 2oy
By the Poincare inequality of Lemma [14], we have
1 n 2 1 n-1 2 n 2 n n n n
= = +ak|[V 46 < k(C|[I +|(I +|(1 V40
207 ey 2 L2(D) ” S LI €Ji 2oy I 2l o) ” 3 LZ(D))“ 47 2oy
Then by ¢ -inequality on the right hand side of the above equation, it follows
2 2 2
Lo Lo ey,
2 >(p) 2 L%(D) L2(D)
k n n n 2 ok n 2
—(C|I +|1 +1 +—|V460
Za( ! L?(D) 2 L2(D) 3 LZ(D)) 2 “ d L2(D)
1 n 2 1 n-1 2 ak n 2 K n n n 2
— =@ +—|Vy40 <—(CjI | +|1
2 >p) 2 (D) 2 “ d L%(D) Za( ! L?(D) “ 2 L?(D) 8 LZ(D))
So that
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2 2 2

2 k
JF_
’D) «

2 kC
LZ(D) a

_ k
n n-1 |1n +—|15 13
L’(D) «

- K|V 40"
L%(D) Lo ” d 2(0)

2 2

2 kC
LZ(D) a

k
LZ(D) +;

2 k

n + —
’D) «

_[on2

17 13

L2(D) L*(D)

ZH

(26)

L2(D) _z“ L2(D) _Z“

LZ(D) L*(D)

The first term for the equation (26)

Adding and subtracting tj_lutj‘1 ,

So that

To approximate | ] , since V4 (Quu) =R, (Vu)andue

7342 |Page
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kllj =kud — (! —ul?

£

Ky - Iut(s)ds
ti

3

=t —ty)ud - j u (s)ds

tjs
we get

t.
]
=t Ut -t ug” *(tj uf -t Lud ™) - Iut(s)ds

t

L L

= Isutt (s)ds—tj4 jun (s)ds
ti tig

4

Kij = J.(sftj_l)utt(s)ds

t

4
— [t Du©ds

tig

j o j (5=t 1)U ()5 a0

L2<D)

t,

sizj' J'(s—tn ) cls_[utt (s)dsdQ
Qt

thg

ty
<Ck j Ju [ 9 (27)

tnfl

HY(Q), we get

i _
2=
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Addition and subtraction (AVu") and by using the triangle inequality, we have

2 2
< Avu™) —avu" +[[AVu" = AR, (Vu"
v o | T
<“7z' (avu")y—avu" 2 +“1Vu” —V4(Qnu™ 2
I L2(D) 4T ey
2
conrzp?, @)

To approximate, |3j and Quu" =u"

. 2
1] =[zn (bu™) ~b(@ou™

L*(D)

:”;zh(bu”)—bu” ?

L*(D)
<ch?2|f?, (29)

Substitute (27), (28), (29) into (26), we have

t)
“;msuMHWMH+Wﬂwﬁ@w$
And in particular
ty
o # SO b9 0)
Then by substituting (30),(24) into(23),we get
ty
www“mmsawﬂwmwkﬂ%hmﬂﬁ

Conclusion:

The present paper presents the full- discrete weak Galerkin finite element method for the non-steady diffusion-convection
problem. by using this method we proved the energy conservation law to verified that the numerical flux to be continuous a
cross the edge of each element K through a selection of the test function v={vg,v,}.We have proved the properties of

the bilinear form a(u,v) , (v-elliptic and continuity ),stability, also we prove the convergence of the scheme.
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