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ABSTRACT 

This paper applied and analyzes full-discrete weak Galerkin (WG) finite element method for non steady two dimensional 
convection-diffusion problems on conforming polygon. We approximate the time derivative by backward finite difference 
method and the elliptic form by WG finite element method. The main idea of WG finite element methods is the use of weak 
functions and their corresponding discrete weak derivatives in standard weak form of the model problem. The theoretical 

evidence proved that the error estimate in 2L -norm, the properties of the bilinear form ),( vua , (v-elliptic and continuity), 

stability, and the energy conservation law. 
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1. Introduction: 

 Weak Galerkin (WG) finite element methods refer to general finite element methods for partial differential equations 
(PDEs). The novel idea of WG finite element methods is on the use of weak functions, weak gradients and their 
approximations results in a new concept called discrete weak gradients which is expected to play important roles in 
numerical methods for PDEs [6]. The key to WG finite element methods is the use of a discrete weak gradients operator 
which is defined and computed by solving inexpensive problems locally on each element. The fundamental difference 
between the weak Galerkin finite element method and other existing methods, such as Discontinuous Galerkin Finite 
Element Method ([1, 3, 17]) and the Finite Volume Method ([4, 7, 18]), is used of weak function and weak gradient in the 
design of numerical scheme based on existing weak forms for the underlying PDEs.  

 WG finite element methods were first introduced in [6] for solving steady second order elliptic problem and later on in [8] 
for shape regular polytopal meshes. The method has been successfully applied to elliptic interface problems [10], 
Helmholtz equations [13], and biharmonic equations [11, 12], in this paper, we applied the WG finite element methods for 

non steady diffusion convection problem and proved that the error estimate in 2L -norm, the elliptic property, and the 
energy conservation law. This paper is organized as follows: Section 2 is devoted to a description some preliminaries and 
notations, In section 3 we show the Convection-Diffusion Problem. The weak function the weak gradient and the weak 
Galerkin method.  In section 4 we discuses the full-discrete weak Galerkin method. In section 5 we proved the energy 
conservation law of WG finite element method. The error analysis for Semi- discrete weak Galerkin finite element method 

proved in section 6. 

2. Preliminaries and Notations:  

Let D  be any open and bounded domain in )2( dRd . We use the standard definition for the Sobolev space )(DH s and 

their associated inner products   Ds,,  norms
Ds,

 , and semi-norms
Ds,

  for any 0s  [5, 14]. For example, for any 

integer 0s , the semi-norm 
Ds,

  is given by 
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With the usual notation, 
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The Sobolev norm 
Ds,

  is given by, 
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The space )(DH s coincides with )(2 DL , for which the norm and the inner product are denoted by
D

 , and  D,   

respectively. When D  , we shall drop the Subscript D  in the norm and inner product notation. The space );( DdivH is 

defined as the set of vector-valued functions on D  which, together with their divergence, are square integrable, i.e.,  

                                                            )}(,)(:{);( 22 DLuDLuuDdivH
d

 , 

The norm in );( DdivH  is defined by, 

                                                                    2
1

22

    D)H(div; DD
uuu   

Definition 2.1 (Bochner Space [1]):  Let X    be a Banach space with a norm 
X

  and a semi- norm
X
 .  Then 
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Definition 2.2 [2]: Young's inequality (  inequality) is defined by 

                                                           ,
22

1 22 baab



  

for a  and b   are real numbers and 0 . 

Definition 2.3 [15]: In a Hilbert space V  the Cauchy-Schwartz inequality which is defined by, 

                                                                vuvu ),( , 

for each u  and Vv . 

 

3. The Convection-Diffusion Problem: 

We consider the non- state diffusion-convection problem, 

                                          TQTfubu
t

u





),0(,                                                                                        (1) 

Subject to 

                                       onuTu D,),0(   and   )()0,( 0 xuxu    x                                                   (2) 
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In a domain 2R with boundary  , where ),( 21 xxx   and ),( txf  , where   a polygonal domain in 2R , u denotes 

the gradient of the function )(xuu  , and   is known as the gradient operator. And   is diffusion coefficient, ),( 21 bbb  is 

a velocity vector. 

For simplicity, let the function f  in (1) be locally integrable in   . We shall consider solutions of (1) with a non-

homogeneous Dirichlet boundary condition Duu )0( , where )(2

1

HuD  is a function defined on the boundary of  . 

Here )(1 H  is the Sobolev space consisting of functions which, together with their gradients, are square integrable 

over ,  )(2

1

H  is the trace of )(1 H  on the boundary of  , The standard weak form for seeks )(1 Hu . Such that 

Duu   on  . 

                                                ).(),,(),(),(),( 1
0  Hvvfvbuvuvut                                                                   (3) 

3.1 THE WEAK GRADIENT: 

The main idea of weak Galerkin methods is the use of discrete weak derivatives in the place of strong derivatives in the 
variational form for the underlying partial differential equations. The weak gradient operator will then be employed to 
discretization the problem (3) through the use of a discrete weak gradient operator as building bricks [6]. The discrete 
weak gradient is given by approximating the weak gradient operator with piecewise polynomial functions. To introduced 
the weak gradient operator;    

 Firstly we define the weak function. Let K  be any polygonal domain with interior 0K and boundary K . A weak function 

on the region K   refers to a vector-valued function },{ 0 bvvv   such that )(2
0 KLv   and )(2

1

KHvb  .The first 

component 0v  can be understood as the value of v  in the interior of K , and the second component bv  represents v  on 

the boundary of  K . Denote by )(KW  the space of weak functions on K  [9]; i.e. 

                                                   )}(),(},,{{)( 2

1

2
00 KHvKLvvvvKW bb  .                                                                   (4) 

Secondly, we define the weak gradient, for any )(KWv , the weak gradient of v  is defined as a linear functional v
w

   

in the dual space of );( KdivH   whose action on each );( KdivHq  is given by 

                                                         




K

b

K

kw ndsqvqdKvqv ,, 0                                                                              (5) 

where n  is the outward normal direction to K . 

The discrete weak gradient operator was defined by approximating vw   in a polynomial subspace of the dual of 

);( KdivH . More precisely, for any non-negative integer 0r , denote by )(KPr  the set of polynomials on K  with degree 

no more than r . Let  2)(),( KPrKV r be a subspace of the space of vector-valued polynomials of degree r . The discrete 

weak gradient operator, denoted by  d  is defined as the unique polynomial ),(),( KdivHrKVvd   satisfying the 

following equation: 

                                               ),(,),( 0 rKVqndsqvqdKvqv

K K

bd   


.                                                            (6) 

3.2 WEAK GALERKIN FINITE ELEMENT SPACE: 

Let hT   be a triangular partition of the domain   with T  as its boundary. For each hTT  , Denote by )( 0TPj  the set of 

polynomials on 0T with degree no more than j , and )( TP   the set of polynomials on T with degree no more than  . A 

discrete weak function },{ 0 bvvv   on T  refers to a weak function },{ 0 bvvv   such that )( 0
0 TPv j   and )( TPvb    with 

0j  and 0 . Denote this space by ),,( jTW ,i.e., 

                                             )}(),(:},{{),,( 0
00 TPvTpvvvvjTW bjb   . 

The corresponding finite element space would be defined by patching ),,( jTW  over all the triangles hTT  . In other 

words; the weak finite element space is given by 
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                                           }),,,(},{:},{{),( 00 hTbbh TTjTWvvvvvjS   .                                                                    (7)                                                               

Denote by  ),(0 jS
h

 the subspace of ),( jSh  with vanishing boundary values on  ; i.e.  

                                         
},0),,(},{{),( 0

0
hTbhbh TTvjSvvvjS 

 
 .                                                               (8)

  

According to (6) for each ),(},{ 0 jSvvv hb  , the discrete weak gradient of v , on each element T  is given by the 

following equation: 

                                          

),(,),( 0 rTVqndsqvqdTvqv

T T

bTd   


                                                                    (9) 

For each element hTT  , denote by 0Q  the 2L -projection from )(2 TL  to )( 0TPj  and by bQ  the )(2 TL   projection from 

)(2

1

TH   to )( TP  . Denote by hR  the 2L -projection of   22 )(TL  onto the local discrete gradient space  2)(KPr . Let 

)(1  HV  .We define a projection operator ),(: jSVQ hh  so that on each element hTT   

                                          
),,(},{},,{ 00 jTWvvvvQvQvQ bbh  .                                                                            (10) 

 

Lemma 3.2.1: Let hQ   and  hR  be the 2L -projection operator defined in previous sections. Then, on each 

element hTT  , we have the following commutative property 

                                               
)(),()( 1 THuuRuQ hhd                                                                                        (11)  

Proof: According to the definition of d , the discrete weak gradient function )( uQhd   is given  by the following 

equation: 

                                        
 





T T

bThd rTVqndsquQqdTuQquQ ).,(,)()()),(( 0                                                   (12) 

Since 0Q   and bQ   are 2L -projection operators, then the right-hand side of (12) is given by;   

                                        

   
 



T T T T

b ndsuqqdTundsquQqdTuQ )()( 0  

                                                                                        
  

T T

h qdTuRqdTu )()(  

 

This implies the desired identity (11). 

    One can also define the projection  h  be the usual projection operator in the Dirichlet finite element method such that 

),( rTHqh   , and on each hTT  , one has ),( rTVqh    and satisfying. 

                                     )(,),(),( 0

00 Tpvvqvq jTwhT   .                                                                 (13) 

The following result is based on the above property of h .  

Lemma 3.2.2 [6]: For any );( KdivHq  , we have 

                                       
 



h hTT TT

hbTwhT jSvvvvqvq ),(},{,),(),( 0
00  .                                                         (14) 

For any ),(, jSvu h  we introduce the following bilinear form  

                                                    ),(),(),( 0 vbuvuvua ddd   ,                                                                                  (15) 

where  
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                                                       


 ,),( dvuvu dddd   

                                                        


 .),( 00 dvbuvbu dd . 

 

4. FULL-DISCRETE WEAK GALERKIN FINITE ELEMENT METHOD [15]: 

We now turn our attention to some discrete time weak Galerkin procedure. We introduce a time step k  and the time 

levels nktt n  . Where n  is a nonnegative integer , and denote by ),( jSUU h
n
h

n    the approximation of )( ntu   to 

be determined .The backward Euler weak Galerkin method is define by a backward difference equation , if 

k
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h                                          (16)                                                                  
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4.1 Properties of the bilinear form ),( vua
h

:[2] 

Let V  be a Hilbert space with scalar product ))((,),( 1 DHVV   , and corresponding norm 
)(1 DH

u  . Suppose that 

),( vua h   is a bilinear form on VV  .  We prove the properties of the bilinear form (V- elliptic and continuity).   

Lemma 4.1 (continuity):  A bilinear form defined on V  space equipped with norm 
V
  is continuous if there is a 

positive constant 0C , such that  

                                                               
DD

n
h

n
h vUCvUa

,1,1
),(  . 

Proof:  By using Cauchy –Schwarz inequality in equation (16), we have   
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Where, },min{
)()( KLKL

bC   . 

Lemma 4.2 (V-elliptic): Let n
hU  be the solution of equation (16) then there exist a positive constant 0 , 

                                                                
2

,1
),(
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n
h

n
h

n
h UUUa   

Proof:  Let
)(KL

  , be the L -norm of the coefficient  , put n
hUv   in equation (16), we have 

                                                        ),(),(),( 0
n
hd

nn
hd

n
hd

n
h

n
h UbUUUUUa                                                                    (17) 

Now, by using Cauchy –Schwarz inequality  
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n
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 by   -inequality in the second term. 
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Substituting (18) into (17), we have 
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2
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Theorem (stability): There exist a constant   independent of h  such that, 
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Proof: choose  n
hUv   in equation (16), we gat  
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 By Cauchy-Schwarz inequality and using the fact that of the first term, we have 
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By the V-elliptic of the two terms, we have. 
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Using  -inequality, we get 
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Substituting (20), (21) and (22) in (19), we have  
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5. ENERGY CONSERVATION OF WEAK GALERKIN: 

Theorem (5.1): The numerical solution of equation (16) satisfies the energy conservation law.  
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The second term of equation, 

                                                                      0100   dTbUdTvbU

T

d
n

T

d
n  

hence from equation (16) we get, 

                                                                         




hh TT T

n

TT T

n
h dTtfdTU )(  

 Then,
 

                                                                              


 dtfdU n
n
h )(  

6. Error analysis for Full- discrete weak Galerkin Finite Element Method: 

In this section we show that the theoretical analysis of error between the exact solution of equation (3) and the weak 

Galerkin approximation (16) by using the 2L -projection uQh   of the exact solution and h  
 be the usual projection define 

in (13) 
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Lemma 6.1: For )(1  rHu   with 0r  . We have 
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Theorem 9.1: Let )(1  rHu   and u  be the solution of (15) and n
hU  be the weak Galerkin approximation of equation 

(16). Then there exists a constant C  such that. 
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From [19] we have 
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To estimate , from equation (15) and lemma (3.2.2), we have 
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By V-elliptic of the bilinear form and Cauchy-Schwarz inequality and  -inequality, we obtain 
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Using here the fact that. 

                                                   
2

)(

2

)(

1
2

)(

2

)( 2222 2

1

2

1

DL

n

DL

n

DL

n
d

DL

n k     

                                                  
)()(

3
)()(

2
)()(

1 222222 DL

n
d

DL

n

DL

n
d

DL

n

DL

n

DL

n IkIkIk    

 

By the Poincare inequality of Lemma [14], we have 
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Then by  -inequality on the right hand side of the above equation, it follows 
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So that 
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And, by repeated application, 
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The first term for the equation (26) 
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To approximate
j

I2 , since )()( uRuQ hhd  and )(1  rHu , we get 
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Addition and subtraction )( nu  and by using the triangle inequality, we have 
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Substitute (27), (28), (29) into (26), we have  
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And in particular 
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Then by substituting (30),(24) into(23),we get 
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Conclusion: 

The present paper presents the full- discrete weak Galerkin finite element method for the non-steady diffusion-convection 
problem. by using this method we proved the energy conservation law to verified that the numerical flux to be continuous a 

cross the edge of each element K  through a selection of the test function },{ 0 bvvv  .We have proved the properties of 

the bilinear form ),( vua , (v-elliptic and continuity ),stability, also we prove the convergence of the scheme.  

REFERENCES 

[1]  C. Jan and Miloslav Feistauer, Theory of the space-time discontinuous Galerkin   method for nonstationary parabolic 
problems with nonlinear convection and diffusion, Mathematical Institute of the Charles University,(2011),pp.1-20.  

[2]  C. Johnson, Numerical solution of partial differential equations by the finite element method, Cambridge University 
Press,(1987). 

[3]  Hashim A. Kashkool, Yahea H. Saleem and Ghazi A. Muften, Error estimate of discontinuous Galerkin finite element 
method for space time discretization of Convection –Diffusion problem, IJPRET,2013; Volume 2(4):25-50. 

[4]   Hashim A. Kashkool, Upwind type finite element method for nonlinear Convection 

-Diffusion problem and applications to numerical reservoir simulation, school of  Mathematical Sciences, Nankai 
Universty, China (2002).     

[5]   J.T. Oden, and T.N. Reddy, An introduction to mathematical theory of finite element, John Wiley and Sons Inc., (1976) 

[6] J. Wang and X.Ye, A weak Galerkin finite element method for second-order elliptic problems, 
arXiv:1104.2897v1,(2011). 



 

I S S N  2 3 4 7 - 1 9 2 1  

 V o l u m e  1 3  N u m b e r  4  

                     J o u r n a l  o f  A d v a n c e  i n  M a t h e m a t i c s   

7344 | P a g e                                        

S e p t e m b e r  2 0 1 6                                            w w w . c i r w o r l d . c o m  

[7]   K. Baba and M. Tabata, On a conservation upwind finite element scheme 

for convection- diffution equation, R.A.I.R.O., Numerical analysis, 15, no. 1, pp.3-25, (1981 ). 

[8]   L. Mu, J. Wang, X. Ye, Weak Galerkin finite element method on polytopal meshes, arXiv:1204.3655. 

[9]   L. Mu, J. Wang, X. Ye, A weak Galerkin finite element method with polynomial reduction, arXiv:1304.6481v1,(2013). 

[10]  Mu, L., Wang, J., Wei, G., Ye., X., Zhao, S., A weak Galerkin finite element method for the elliptic interface problem, 
arXiv:1201.6438v2,(2012). 

[11]  Mu, L., Wang, J., Wang, Y., Ye., X., A weak Galerkin mixed finite element method for Biharmonic equations, 
arXiv:1210.3818,(2012). 

[12]  Mu, L., Wang, J., Ye., X., Zhang, S., A 0C -weak Galerkin finite element method for the biharmonic equation, 

arXiv:1212.0250,(2012) 

[13]  Mu, L., Wang, J., Ye., X., Zhao, S., Numerical studies on the weak Galerkin method for Helmholtz equation with large 
wave number, arXiv:1111.0671,(2011). 

[14]   P. G. Ciarlet, The finite element method for elliptic problems, Amesterdam. North Holland, 1978. 

[15] Qiaoluan H. LI and J. Wang, Weak Galerkin finite element methods for parabolic equations, 
arXiv:1212.3637v2.(2013). 

[16]  Quarteroni and A.valli, Numerical approximation of partial differential equations, ISBN 3-540-5711-6, Springer-Verlag 
Berlin Heidelbery-NewYourk,(1997). 

[17]  S. Sun and M. F. Wheeler, Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in 
porous media. SIAM J. Numér. Anal. 43 (2005), 195–219. 

[18]  Uwe Risch, An upwind finite element method for singularly perturbed 

elliptic problems and local estimates in the L∞-norm, MAN, 34, no. 2, pp. 235-264, (1990). 

[19]   V.Thomee, Galerkin finite element for parabolic problem, Springer-Verlag, Berlin,1054,(1984) 

 

 

This work is licensed under a Creative Commons Attribution 4.0 International License. 

 

http://creativecommons.org/licenses/by/4.0/

