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Abstract 

The conventional Fisher linear classification analysis has been investigated by numerous researchers and this has led to 
different modification or splicing due to non- robustness when the assumptions are violated and also when the data set 
contains influential observations.  This paper adduced a winsorized procedure to robustify the probability base 
classification approach.  The comparative classification performance of the Fisher linear classification analysis and its 
spliced versions when the data set are contaminated are investigated. The simulation results revealed that the robust 
Fisher’s approach based on the minimum covariance determinant estimates outperformed the other procedures; a good 
competitor to this technique is the winsorized probability base classification technique. Though, the robust Fisher’s 
technique using the minimum covariance determinant estimates breakdown for mixture contamination. On a general note, 
the conventional Fisher’s approach and the probability base technique performed comparable. 

Introduction  

Linear classification techniques such as the Fisher’s method have been studied extensively and its modifications have no 
restriction in multivariate statistics. The performance of the Fisher’s technique will be inaccurate and inefficient if the 
conventional assumptions are violated(Wang 2005). The Fisher’s method is basically designed in such a way that 
maximizing the between group scatter and minimizing the within group scatter allows for maximum separation of the 
groups. This concept can easily be visualize graphically (Johnson 2007) and allows the unknown sample observation to 
be accurately assigned to the exact group. Though, as a dimension reduction procedure, the Fisher linear classification 
rule outperformed the principal component analysis (PCA) and other dimension reduction techniques(Chiang 2004). Even 
though, the Fisher’s approach is robust against the PCA, upon assumption violation, the Fisher’s technique still 
underperformed if the data set contains influential observations. It has been extensively robustified by using the plug-in 
and data transformation procedures.  

 Conventionally, linear classification technique such as the Fisher linear classification rely on the training set to build the 
model and due to upward biased,  the training set is not applied to validate the model. In such scenario, the test data set is 
used to validate the model in other to obtain unbiased result. Generally, linear classification rule is designed  such that the 
unknown observation is accurately assigned to well defined group(Johnson 2007). Though different robust linear and 
quadratic classification rules have been proposed using the plug-in technique (Croux 2008; Wang 2014; Chen 1994; 
Hubert 2011a; Crimin 2007). Wang (2004) applied the winsorized approach to robustify the Fisher discriminant analysis. 
The crux of it is that the winsorized approach renders the influential observations ineffective. 

The minimum covariance determinant (MCD) procedure is also a highly robust multivariate estimator and has bounded 
influence function. It is applied to robustify classical sample mean and covariance matrix used as a replacement 
parameter for  classical estimators of multivariate techniques such as principal component analysis, factor analysis and 
discriminant analysis (Croux 2000; Hawkins 1997). The MCD estimators are usually used as initial estimators when 
considering two stage techniques. The minimum covariance estimator (MCD) (Rousseeuw  P. J. 1985) were proposed to 
robustify the sample mean vectors and covariance matrices. The robustified sample mean vectors and covariance 
matrices are plug-in into the conventional multivariate procedures to obtain robust multivariate techniques including the 
Fisher’s technique. It has been applied to robustify the linear discriminant analysis and the quadratic discriminant analysis 
by Hubert and Van Driessen(Hubert 2004b). The procedure strictly depends on information gleaned from the half set. The 
half set does not utilize the entire data set. This procedure is a data cleaning technique that is used as a preprocessing 
step before being applied to the technique of interest. This procedure requires concentration steps, detail of this robust 
high breakdown method  and its application to classification is contained in (Rousseeuw 1999b).  

Robustification of any classical classification techniques arises from poor classification performance if the data set 
contains influential observations or assumption violation. For instance,  the under classification performance of the Fisher 
linear classification rule  is due to estimation errors of the mean vectors and covariance matrices(Pohar 2004). The  high 
misclassification rate of the conventional linear classification procedures is due to instability of the  sample mean and 
covariance matrix (Maronna 2006; Munoz-Pichardo 2011). Wang (2005) applied the M-estimate  to transform the sample 
observations in other to reduce the influence of the multivariate observations thereby allowing the retainance of the in-lier 
observations. 

The objective of linear classification splicing is to modify existing linear classification technique(s) to achieve more 
effective classification results. This involves introducing different concept to existing procedure to output better 
performance. In this paper, the objective is to robustify the conventional Fisher and the probability base linear 
classification rules by applying the winsorized procedure. The procedure is straight forward in the sense that we substitute 
the winsorized mean for the classical mean, same follows in computing the covariance matrices respectively. In practice, 
the winsorized mean is insensitive to influential observations and hence is regarded as a robust estimator(Wilcox 2003).  

The reminder of this paper is organized as follows. Section Two briefly describes the Fisher linear classification rule. 
Section Three contains the Fisher approach using the minimum covariance determinant estimates. The probability base 
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classification rule is described in Section Four. The winsorized probability base classification rule is presented in Section 
Five. Simulation and analysis is contained in Section Six while conclusion is contained in Section Seven. 

Fisher linear classification analysis(FLCA) 

The Fisher linear classification analysis (FLCA)(Johnson, 2007) is a dimension reduction approach which encompass 
separation and classification. This procedure is a linear combination of measured variables that best describe the 
allocation of individual or observation to well defined groups. The mean, covariance matrice and the pooled covariance 
matrix are the building block of this technique. This procedure, assumed that the variance covariance matrices are 
homoscedastic, the data set are Gaussian in nature and the mean vectors are not equal for each group. The coefficient of 
this procedure is obtained by post-multiplying the inverse of the pooled covariance matrix by the within group mean vector 
difference (Okwonu, 2016). To allow separation and allocation, the coefficient must be non zero(Rencher 2002). Allocation 
of observation to well defined group in the case of group allocation is done by comparing the classification score with the 
cutoff point. To this end, an observation is assigned to group one if the classification score is greater than the cutoff point 
otherwise, the observation is assigned to group two. 

Fisher linear classification based on minimum covariance determinant(FMCD) 

The minimum covariance determinant (MCD) estimator proposed by Rousseeuw (1985) like the minimum volume ellipsoid 
estimator minimizes the determinant of the covariance matrix. This robust multivariate estimator of mean vector and 
covariance matrices are insensitive to outlying observations (Gervini 2003; Rousseeuw 1990).The minimum covariance 

determinant procedure search for the subset ih  (out of in ) of the data set whose covariance matrix has the minimum 

determinant(Hubert 2004b). The sample observations based on the half set ih are chosen from the multivariate data set to 

obtain the MCD estimates. The half set ih  strictly depends on the arithmetic of the sample size and sample dimension. 

These robust estimates are computed based on the clean data set selected by the half set. The performance of this 

estimator depends on the half set. The MCD rely only on the half set not the entire data set.  The half set h   is constrained 

in the sense that if the half set is too large, the MCD estimator is not robust; however, if the half set is too small the 
estimator tends to underestimate it accuracy. The robust MCD estimates of mean vectors and covariance matrices are 
plug-in into the Fisher’s Equations to obtain the robust Fisher linear classification rule(Hubert 2004b). Detail of this 
procedure is contained in (Croux 1999; Fauconnier 2009; Hubert 2011b, 2008; Pison 2002; Rousseeuw 1999a; Maronna 
2006). Although, the minimum covariance determinant is computed based on the FAST-MCD algorithm of Rousseeuw and 

Van Driessen (1999). Detailed description and theorem to compute the concentration steps of the half set is contained in 
(Rousseeuw 1999a). The classification procedure allows an observation to be assigned to the correct group; in this case, 
if the classification score is greater than the cutoff point the observation is assigned to group one otherwise the 
observation is allocated to the second group (Okwonu,2013). 

Probability base linear classification technique(PCT) 

Conventionally, the coefficient of the Fisher’s technique is based on the within group mean vector difference and the 
inverse of the pooled covariance matrix. The probability base classification  technique(Okwonu 2013) only utilize the within 

group mean vectors difference for the two groups, say, 1 2 ,d x x  and the sum of the within group mean vectors is 

given as 1 2.d x x 


To formulate the coefficient of this procedure, the following are obtained; 
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Based on the definitions in Equation (1), the following is obtained 
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total probability. The component of the decision rules are described as follows; 
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Equation (3) describes the classification score z  and Equation (4) is the decision point ,z  
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Based on the above analysis, an observation in group one is correctly assigned to group one if the classification score is 
less than the decision point otherwise, the observation is assigned to group two. 

Winsorized probability base classification technique(WPCT) 

The conventional probability base classification rule discussed previously, utilized the conventional sample mean which 
may be susceptible to influential observations. In this section, we proposed its modification by using the winsorized mean. 
That is, instead of applying the classical sample mean and covariance matrices computed from the data set, the 
winsorized technique is applied to winsorized the data set and hence computes the winsorized mean and covariance 
matrix. These robust estimates are plug-in in place of the classical mean and covariance matrices respectively. The 
winsorized mean and covariance are applied to build the model. This technique is straight forward since is strictly based 
on plug-in approach. Like the previous procedures, the test data is used to validate the model. Allocation of observation is 
done in the same manner as in the previous methods. The objective is to investigate if the winsorized approach is robust 
over the conventional method. 

Simulation and analysis 

In this section, the comparative performance of the above techniques including the robust Fisher’s technique based on the 
minimum covariance determinant (MCD) (Rousseeuw 1999a; Hubert 2004a) are investigated. To investigate the 
comparative performance of these techniques, the data set are generated based on contaminated normal 

model (1 ) (0,1 ) ( , )d d d dN N I      in which majority of the data set come from the normal distribution while the 

rest are obtained from a contaminated normal distribution. This is done by varying the mean vectors and the variance. The 
level and proportion of contamination strictly depends on the mean vectors,variance and .  we intend to mimic the 

contamination procedure in(Khan 2007). In all, the sample size iN  for all group are equal, where d is the dimension of 

the sample size and ( 1,2)i i  is the number of groups, respectively.  The robustness of this methods are determined by 

comparing the mean probability of correct classification with the mean of the optimal probability of correct classification 
computed based on the data set generated from the normal distribution. The performance analyses are shown in the 
following figures.  The data set for Fig. 1 below is generated based on the contaminated normal model that is asymmetric. 

That is shift normal contamination (1 ) (0,1) (20,1).d dN N    
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                                             Fig. 1 classification performance based on shift contamination 
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The data set for Fig. 2 below is obtained based symmetric normal contamination 

(1 ) (0,1) (0,20).d dN N    The sample size is equal for all groups with corresponding three 

dimension. 
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Fig.2 classification performance based on symmetric contamination 

Fig.3 below is obtained from data set generated from asymmetric, shift normal contamination 

(1 ) (0,1) (50,1).d dN N    
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Fig. 3 classification performance based on asymmetric contamination 

Fig. 4 below is obtained based on mixture contamination in which the mean and variance are equal,say 

(1 ) (0,1) (10,10).d dN N    
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Fig.4 classification performance based on mixture contamination 
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Conclusion 

The winsorized probability base classification rule requires large sample size to compute its estimates; the 
conventional probability base approach is advantageous in this aspect. For the shift contamination with small 
proportion of contamination, the FMCD approach outperformed the other techniques but as the proportion of 
contamination increases, the other procedures outperformed the FMCD. For the asymmetric contamination, the 
other classification techniques outperformed the FMCD, while the WPCT method outperformed the other 
techniques for mixture contamination except the FMCD. The comparative analysis revealed that the different 
techniques performed differently depending on the contamination model the data set are derived. 
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