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ABSTRACT

This paper deals with a new generalization of the Weibull distribution. This distribution is called exponentiated
exponentiated exponential-Weibull (EEE-W) distribution. Various structural properties of the new probabilistic model are
considered, such as hazard rate function, moments, moment generating function, quantile function, skewness, kurtosis,
Shannon entropy and Rényi entropy. The maximum likelihood estimates of its unknown parameters are obtained. Finally,
areal data set is analyzed and it observed that the present distribution can provide a better fit than some other known
distributions.
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INTRODUCTION

The statistic literature is filed with hundred of continuous univariat distributions; see Johnson et. al., [1, 2]. Recent
developments focus on new techniques for building meaningful distributions, including the two piece approach introduced
by Hansen [3], the perturbation approach of Azzalini and Capitanio [4] and the generator approach pioneered by Eugene
et. al., [5]. Many subsequent articles apply these techniques to introduce a skew in to well-known symmetric distributions
such as the Student t; see Aas and Haff [6]. Numerous classical distributions have been extensively used over the bast
decades for modeling data in several areas such as engineering and actuarial. However in many applied areas there is a
clear need for extended forms of these distributions. Some attempts have been made to define new families of probability
distribution. One such example is a abroad family of univariate distributions generated from the Weibull distribution
introduced by Gurvich et. al., [7].

The Weibull distribution is a very popular model and it has been extensively used over the past decades for modeling data
in reliability engineering and bio-logical studies. It is generally adequate for modeling monotone hazard rates. The hazard
rate function of the Weibull distribution can only be increasing, decreasing or constant. For many years, researchers have
been developing various extensions forms of the Weibull distribution. For some extended forms of the Weibull distribution
(see, for instance, Bebbington et. al., [8], Zhang and Xie [9], Xie et. al., [10], Carrasco et. al., [11], Sarhan and Zaindin [12]
and Almalki and Yuan [13]. Also, Xie and Lai [14] proposed a four-parameter additive Weibull (AW) distribution based on
combining the failure rates of tow Weibull distributions: one has a decreasing failure rate and the other one has an
increasing failure rate.

In the last years, several ways of generating new probability distributions were developed and discussed. Eugene et. al.,
[5] proposed a general class of distributions based on the logit of a beta random variable by employing two parameters
whose role is to introduce Skewness and to vary tail weights. An extension of the beta-generated method was proposed in
Cordiro and de Castro [15] by using the Kumaraswamy distribution instead of beta distribution. Following Eugene et al [5],
who defined the Beta Normal (BN) distribution. Nadaraga and Kotz [16] introduce the beta Gumbel distribution (BGa).
Nadaraga and Gupta [17] defined the Beta Fréchet (BF) distribution. Nadaraga and Kotz [18] proposed the beta
exponential (BE) distribution.

Recently, Alzaatreh et. al., [19] developed a new method to generate family of distributions and called it the family of
distributions. This new class of distributions is defined as:

—log(1-F (x))
G(x)= j r(t)dt,
0
@
where I’(t) is the probability density function (p. d. f.) of non-negative continuous random variable
The corresponding p. d. f. is given by
f(x)
g(x)=—"=r{-log(1-F(x))}. @
1-F(x)
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Following Alzaatreh et. al., [20], who defined above family, Alzaatreh et. al., [19] defined the Weibull-Pareto distribution by
taking I' () to be the Weibull distribution and  f (X) to be the Pareto distribution and Alzaatreh et. al., [21] introduced

the gamma-normal distribution by taking I (t) to be the gamma distribution and f (X ) to be the normal distribution.
Alzaghal et. al., [22] defined a new family of distributions called exponentiated T —X distribution by define the upper limit
in Equation (1) to be —log(1—F° (x)).

Definition: (See Alzaatreh et al. [19]) :

Let r (t) be the p. d. f. of the random variable T €[a,b] ,for —co<a<b <o andlet W [F (X )] bea

function of the cumulative distribution function (c. d. f.) of the random variable X suchthatW [F (X )] satisfies the
following conditions:

OW [F(x)le[ab] .
@iy W [F (x )] is differentiable and monotonically non-decreasing, and
i)W [F(x)]>aas X ->—0 and W [F(X)]—>b as X - .

Then according to the above definition, Alzaatreh et. al., [19] defined T —X family of distributions by
W [F (x)]
G(x)= [ r(t)dt )

a

The p. d. f. corresponding to (3) is given by
d
g(X)={d—XW[F(X)]}r{W[F(X)]}- (@)

Let I (t) be the probability density function (p. d. f) on a nonnegative continuous random variable t defined on

[0,0) ,andlet F(X) denote the c. d. f. of random variable X. The c. d. f. of Exponentiated T — X class of
distributions for a random variable X is defined by, see Alzaghal et. al., [22]

—log (1-F¢ (x))
G(x)= j r(t) dt
0

=R{-log(1-F°¢ (x))}, (5)
and the corresponding p. d. f. is given by
cf (x)F°(x)

1-F%(x)
In this new class, the distribution of random variable t is the generator. The new family of distributions generated from

equation (3) is called “Exponentiated distributions”.We will defined the exponentiated exponentiated exponential-X
(EEE-X) distribution from equation (3) by taking to be EE distribution with p. d. f. defined as

rt)=ai(l-e*)* e, )
Then the p. d. f. of the EEE —X family is given by :
_ /1 FC*l 1_FC Aya-1 1_FC A-1 0
g(x)=cal(x)F " (x)( (x)) )" (X)), x> 8)
The rest of the article is organized as follows. We introduce the EEE-W distribution in Section 2. A range of mathematical
properties are considered in Sections 3., quan-tile function, random number generating, skewness, Kurtosis, moment
generating function and moments. Two popular entropies are investigated in section 4, namely Shannon entropy and

Rényi entropy and we get some numerical values for each one. Estimation by the method of maximum likelihood is
presented in Section 5. Finally, Application of the distribution to a real data set is provided in Section 6.

r {-log(1-F®(x)). ®)

g(x)=
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Figure 1. Plots of EEE-W density function for some values of the parameters

2. THE EEE-WEIBULL DISTRIBUTION:

_ _ V4
If X~Weibull distribution with p. d. f. . f (X )=y B7x” e F)" % >0 . Then, from Equation (8), the p. d. f. of
EEE-W distribution defined as

g(x)=cai(yp’x" e Py (1-e P71 (1-(1-e PV o)Ayt

x(1—(1—e (FX) e )i ©

From (5) we obtain the c. d. f. of EEE-W distribution as:
(= (1 (BX) e
G (X ) — (l—e /1( Iog{l (1 € ) }) )0.’

(10)
From Egs. (9) and (10) we can define the hazard function of EEE-W distribution as follow:

g(x) _cai(ypH ey a-e P ) a(x)

hy (X) = - (11)
g 1-G(x) 1-(1- e—ﬁ(—log{l—(l—e‘(ﬁx)y Mya
where,
_ Y _ _ Y _
o(x) = (1-(1-(1-e Pt (1-e )y
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Figure 2. Plots of EEE-W hazard rate function for some specific values of the parameters

Figures 1 and 2 provide some plots of the EEE-W density and hazard rate curves for selected values of parameters. From
these figures it is immediate that the p. d. f. ca be reversed -J, decreasing, right-skewed and symmetric and the hazard
rate function can be decreasing, increasing and bathtub shaped. Hence, the EEE-W distribution can be very useful in
fitting different data sets.

3. STATISTICAL PROPERTIES OF EEE-W.

In this section, we obtain some statistical properties of the new model, including quantile function, random number
generating, Skewness, Kurtosis, moment generating function and moments.

3.1. Quantile function and random number generating.

For a non-negative continuous random variable X that follows the EEE-W distribution, the quantile function Xq is given by

1 ﬂl/a 1/c 1y
_ |0 1—-| 1- ==
Q(4)= ; (12)
In particular, the distribution median is
1y
_ 1a 1/c
_ |og 1-| 1— ﬂ
0.5

05) =
Q (0.5) ;
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The random number generation as X of EEE-W is defined by the following relation
y o
—/1( —Iog[l—(l—e*(ﬂx Yy } )
l-e =u, where U ~U (0,1).

Thus

1y

1a 1/c
_|0g l_(l_luJ
u

B

One can use (13) to generate random numbers when the parameters « ,B VY Aand C are known

3.2. Skewness and kurtosis based on quantiles.

Skewness measures the degree of the long tail and Kurtosis is a measure of the

degree of tail heaviness. Based on quantile function Q () , Galton [23] and Moors [24] defined the Skewness and
Kurtosis, respectively, as

_Q(3/4)-2Q (1/2)+Q (1/4)
B Q(3/4)-Q (1/4)

G

and

. _Q(718)-Q(5/8)-Q (3/8)+Q (1/8)
M Q(6/8)-Q (2/8) '

Therefore, Galton's Skewness and Moors' Kurtosis of the quantile function defined by (12) can be get easily. Figure 3
illustrated the graphical representation of the Galton Skewness and Moors Kurtosis as a function of ¥
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Figure 3. Plots of Galton Skewness and Kurtosis for the EEE-W as a function of y.

3.3. The moment generating function.

The moment generating function (m.g.f.) of EEE-W distribution can be given as follow

o0 Ooootl) 1%
My ) =[e™g(x)dx =] X' g(x)dx. (14)
0 ov=0 U

By using the following series expansion
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00 i
pxy et~ (B Sisx)
(1-e ) _-Z‘—i! (c-1)e

(15)

(1—(1—(1—e_(ﬂx ) )C )ﬂ)a—lz i [ J JTa j( -] :k —1]

j=0

2 (-1)! _
xlz(:)( “) (ck) e (16)

and

(1-(1-e Pyt o Z( A ]i o N(BX)

m=0
(7)
Hence, the m.g.f. defined as

M(t)li Z

(- 1) (c_1) Z(J—aJi[—ﬂjJrk—lJ
J k=0 k

_1| 0 “A+m o _1n

n

m n

o0
<2
1=0

8 Caly _ F(u—1+2]
B A+i+1+n) 7
(18)
3.4. The moments.

The moments of EEE-W distribution can be given as follow

E(Xr):ofxrg(x)dx
0

19)
By using Egs. (15), (16) and (17), we have

r-1

y caly 1 F(r—l+2j
==+
B A+i+1+n) 7

(20)
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The mean and the variance of EEE-W are reported in Table 1 for some values of C, ¢, A, ﬁ and y . Itis observed that,

mean and variance decreasing as the values of the parameters A, ﬂ and ¥ increasing. When the values of Cand &
are increase, the mean and variance increase.

4. ENTROPIES.

Table 1: Mean and variance for some arbitrary parameter values.

Parameters a=1 1=1 =1 r=1
c Mean Variance
0.1 0.153461 0.211635
0.5 1.08677 0.710132
15 1.28037 1.15458
2 15 1.25
a c=1 A=1 | B=1, =1
0.1 0.153461 0.211635
0.5 0.613706 0.710132
15 1.28037 1.15458
1.9 1.45972 1.23397
2 c=1, a=1 | p=1, y=1
0.4 25 6.25
0.6 1.66667 2.77778
0.8 1.25 1.5625
1.2 0.833333 0.694444
B c=1 a=1 | p=1 y=1
0.3 3.33333 11.1111
0.6 1.66667 277778
0.9 1.11111 1.23457
1.2 0.833333 0.694444
Y c=1, a=1 | p=1, y=1
0.4 3.32335 108.955
0.8 1.133 2.03965
1.2 0.940656 0.619742
15 0.902745 0.37569

Entropy is measure of the randomness of systems and it is widely used in areas like physics, molecular imaging of tumors
and sparse kernel density estimation. Two popular entropy measures are the Shannon entropy (Shannon [25]) and Rényi

entropy (Rényi [26])

ny =E (=logg (x)),
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respectively, where £ >0 and ¢ #1.

4.1. Shannon entropy.
The Shannon entropy for the ET-X family defined by Alzaghal et. al., [22] as

n, =—logc— E(Iogf(F‘l{l e‘t}”"))+ E(Iog{l e }) Ly +1rp . (21)
Then, from Equation (21) the Shannon entropy of EEE-W distribution is defined by

=—logc —E (logf (F*{1- e—t}l’c))+ “E (log{1—e'})

+— Z( 1) ¢(a- 1|)( Y: —log(al)-¢()+ap(a+1), (22)
where,

o i . 1
—Ilzﬂ: (—1) C(a—l, |)—(1+i)2,

)= (a-1)(x—- 2) (a—l)

cla-1i

and

i =—log(al)—-¢(1)+(1-a)+ag(a+l),

are the mean and Shannon entropy for the Weibull distribution, respectively.
Remark.

Some numerical values for the Shannon entropy are displayed at Table 2. It can be observed that this entropy decreasing
with increasing A, # and y and can have negative values.

Table 2: Shannon entropy for some arbitrary parameter values.
Parameters a=1 1=1 ﬂ:z, 7/:1

C Shannon entropy
2 0.613706
25 0.670934
0.734462
0.780748
c=1 41=3 =04, y=1
0.815923
0.833236
0.850365
0.863935
c=2 a=1 p=2, y=1
0.0872251
—0.201573
—0.398779
—0.547716
c=2, aa=3 A=1 y=1
0.392962
0.10528
—0.117864

w
(3]

mhwhmhwm@mmeQw-
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—0.454336
c=1 a=2 A=1 B=3
—0.542872
—0.967659
—1.265

—1.49394

g D WN|R| N

4.2. Rényi entropy.

Let X ~ EEE-W (C, a, A, ﬁ, }/) , then the corresponding Rényi entropy is obtained as:

Iy =109 [(Car(ypx 7 e P ) (--e P "
- &
0
x(1—(1—e P y7 gx (23)

Remark.

Some numerical values for the Renyi entropy are displayed at Table 3. It can be observed that this entropy decreasing
with increasing 4 and f and can have negative values.

Table 3: Rényi entropy for some arbitrary parameter values.

Parameters a=02, 1=3 £=04, y=1
C Rényi entropy
1 0.249183
1.1 0.374287
1.2 0.484313
1.3 0.582012
a c=1 1=3 f=04 y=1
0.01 —2.51181
0.02 —1.83229
0.03 —1.44028
0.05 1.23397

A c=1 a=0.05 B=04 y=1
1.1 0.0473772
1.2 —0.0396342
1.4 —0.1937850
1.6 —0.3273160
Jij c=1 «=0.05 A=18 y=1
0.2 0.248048
0.4 —0.445099
0.6 —0.850564
0.8 —1.13825
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3 c=1 «=0.05 A=18 p=08
1.1 —1.0999
1.3 —1.01836
1.5 —0.937665
1.7 —0.861333

5. MAXIMUM LIKELIHOOD ESTIMATION.

Consider the random variable X follows Weibull distribution and let 6 = (C, a, A, ﬂ, ]/) be the parameter Vector.
The log-likelihood ¢ = ¢ (&) is given by

n n
¢=nlogc +nloga+nlogA+nlogy+nlog B’ +(y-1)Y_ logx; — 7> x[
i=1 i=1

+(c—1)i log (1—e~(#%) )+(a—1)i log (1—(1—(1—e (P47 )e)Ay
i=1 i=1

+(I —1)§n; log (1—(1—e A% ey (24)
i=1

On taking the partial derivatives of the log-likelihood in Equation (24) with respect to C, «, A, ﬂ and ¥ and equating the
derivatives to zero, we have

o n PR
—=—+ log(1—e (Bx;i)
oc ¢ |Z=‘i 9( )
+(a—1)i A(L-(—e PV e AX)T ) [og(1-e AN )y
=1 1-(1—(L—e (P )y
0 _(1—e Py Jog(1—e PN
+(’1_1)Z e ) Iog(lye )=0, (25)
i=1 1_(1_e—(ﬂxi) )
n
§—i=%+z Iog(1—(1_(1_e—(ﬂxi)y ) ) =0, o
i=1
o A i=1 1—(1—(1_e_(ﬂxi)y )C)l
n
S loga- e P )0,
i=1
o¢ n n n N
6—:—+n|09,3+z logx; —ﬂVfo’logxi _ﬂ“Ogﬂiny
yor ) i 2
L i) e (BX )
+Hc-1) (Bxi) log(px; )e
i=1 1_e~(Bx)
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n _a—(Bx) 1 Y4 e (BXi )
HA-1)Y —(1-e ) (BX;) Ic;g(ﬁx,)e 0, (28)
i-1 1- (1—e ()

X_}/ef(ﬂxi )}/
' +(a—1)x

or n L 2y g
ALY Y S+ -1 _
op B = ic1 1-e (F%)

i Z(l_(l_ef(ﬂxl )7 )C )ﬂ'_lc (1_e7(ﬂxi )}’ )C—lyﬂYXIJ/—lxlﬂ/—le*(ﬂM )}/

= 1-(1—(1—e (PXi) )ey2
=0.

(29)
Solving these equations numerically using the statistical software Mathimatica package yields the maximum likelihood

estimators (MLEs) 0= (a, ,&,/i, 7,€) of @=(a, 5, A,7,C)

6. REAL DATA APPLICATION.
Here, we illustrate the applicability of EEE-W distribution by considering the

following dataset. We fitted the following distributions to data set: Weibull distribution, Gamma distribution, modified
Weibull distribution and transmuted Weibull distribution:

* Weibull distribution (W (53, 7) ):

g(x)=yp" x" e P X, 7, >0,

« Gamma distribution (Ga (K , @) ):

9(X)=%xk‘1e_xﬁ, x,k,6>0,
I'[k]e

« Modified Weibull (MW (S, 3, ¥)):

g(x)=(5+Byx? e Fxd X, 8, B, y>0,

« Transmuted Weibull (TW (77, o, 4) ):

1 xy —(Xy7
g(x)zﬁ(fj e oV (1-2122e7(), X,1,0>0,|4|>1.
o\ O

For illustrative purposes, we estimate the unknown parameters of each distribution by the maximum-likelihood method,
and with these obtained estimates; we obtain the values of Akaike Information Criterion (AIC), and Hannan-Quinn
Information Criterion (HQIC). The following dataset acts the breaking stress of carbon fibers of 50 mm in length (Nichols
and Padgett [27]) and listed in Table 4.

Additionally, to compare the models, we used four other criterions:
» Kolmogorov-Smirnov test statistics (K-S) - small value is good.
» The P-value from the chi-square goodness-of-fit test-large value is good.

* Negative log-likelihood-small value is good.
*
« Cramer-von Mises (W ) goodness-of-fit statistic-small value is good.

*
* Anderson-Darling (A ) goodness-of-fit statistic-small value is good.

The results for the dataset are presented in Tables 5, 6, 7 and 8. From these results indicate that the EEE-W distribution
has the smallest values of the AIC, HQIC, K-S, , and the largest value of p-value are obtained for the EEE-W
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distribution. Therefore, we conclude that the EEE-W distribution provides the best fit among the compared distributions.
Table 9 gives some descriptive statistics for dataset and it is noted that the dataset has negative Kurtosis.

Table 4: Breaking stress of carbon fibers data.

370 | 212 | 295 | 470 | 1.25 | 322 | 169 | 3.27 | 287 | 147 | 311
365 | 274 | 3115 | 297 | 203 | 438 | 3.39 | 3.28 | 3.09 | 1.87 | 3.15
490 | 442 | 273 | 1.08 | 3.39 | 189 | 184 | 281 | 420 | 3.33 | 255
331 | 157 | 241 | 250 | 256 | 296 | 288 | 039 | 3.68 | 2.48 | 0.85
161 | 331 | 267 | 3.19 | 360 | 1.80 | 235 | 282 | 205 | 3.65 | 3.75
243 | 279 | 285 | 293 | 322 | 311 | 253 | 255 | 259 | 203 | 161

Table 5: The MLEs of the parameters for some models fitted to the Breaking stress of carbon fibers

data.
Distribution Estimates
W (8, 7) 0.345 2.000 - - -
Ga(k, 9) 13.384 0.200 - - -
MW (5, £, 7) 1.1x107%° | 0.063 | 2.543 - -
TW (n,0, 1) 1.899 2.355 | 0.983 - -
EEEW (C,a, 4, B,7) 0.986 0.819 | 1.630 | 0.273 | 3.884

Table 6: The values of AIC and HQIC statistics for some models fitted to Breaking stress of carbon

fibers data.

Distribution AIC HQIC
W (5, 7) 200.417 | 202.147
EW (a, y, £) 203.213 | 205.809
Ga(k, @) 201.308 | 203.039
MW (5, B, 7) 187.502 | 190.098
TW (1,0, 1) 185.752 | 188.348
EEEW (C,a, 4, f,7) | 181849 186.22

Table 7: The values of K-S, p-value and -Log L statistics for some models fitted to Breaking stress of
carbon fibers data.

Distribution K-S p-value —log L
W 0.226512 0.00228941 98.2083
Ga 0.141662 0.14139700 98.6540
MW 0.177923 0.03063720 90.7509
™ 0.151172 0.09792410 89.8759
EEEW 0.0810598 0.77867900 85.9468
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* *
Table 8: The values of W and A statistics for some models fitted to Breaking stress of carbon fibers data.

Table 9: Descriptive statistics of the EEE-W distribution for the Breaking stress of carbon fibers

Distribution w A"
w 1.018880 5.20603
Ga 0.402684 2.63673
MW 0.516374 2.62049
T™W 0.336408 1.73131
EEEW 0.26702 0.49363

data
Mean Median SD MD-mean MD-median
2.75955 2.835 0.891455 0.683223 0.678939
Skewness Kurtosis S. Entropy Min. Max.
-0.13046 0.17421 0.891455 1.25 4.90
MD = Mean deviation, S = Shannon
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