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ABSTRACT

In this paper, we present some assumptions to get the numerical scheme for backward doubly stochastic differential delay
equations (shortly-BDSDDES), and we propose a scheme of BDSDDEs and discuss the numerical convergence and rate of
convergence of our scheme.
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1 Introduction

Backward stochastic differential equations ( shortly-BSDES) have been first presented in Pardoux and Peng [16, 17] in order to
proved existence and uniqueness of the adapted solutions and presented a new class of backward doubly stochastic differential
equations, further investigations being (see [3, 4, 11, 13]). A lot of mathematicians interested in a numerical methods for
approximating solution of BSDEs ( see [1, 10, 14, 15, 18, 22]). Xuerong Mao et al. [21] discussed the effects of environmental
noise on the delay Lotka-Volterra model. Brahim Boufoussi et al. [2] presented a new class of backward doubly stochastic
differential equations, this a new class depend on an integral with respect to an adapted continuous increasing process. Lukasz
Delong [5, 6] studied applications of a new class of time-delayed BSDEs and he gives examples of pricing, hedging and portfolio
management problems which could be established in the framework of backward stochastic differential delay equation. Wen Lu
et al. [19] investigated a class of multivalued backward doubly stochastic differential delay equation, and they proved the
existence and uniqueness of the solutions for these equations under Lipschitz condition. Using the Euler-Maruyama method,
Xiaotai Wu and Litan Yan [20] defined the numerical solutions of doubly perturbed stochastic delay differential equations driven
by Levy process, and they proved the numerical solutions converge to the exact solutions with the local Lipschitz condition.
Delong and Imkeller [7] presented a class of BSDEs with time delayed, and they established the existence and uniqueness of a
solution for BSDEs with time delayed. Also, they [8] proved the existence and uniqueness as well as the Malliavin's
differentiability of the solution for BSDEs with delayed time. Moreover, Diomande and Maticiuc [9] proved the existence and
unigueness of a solution for multivalued BSDEs with time delayed generators. Besides, Lu and Ren [12] established the
existence and uniqueness of the solutions for a class of backward doubly stochastic differential equations with time delayed
coefficients under Lipschitz condition.

The purpose of this work is to study the numerical convergent of backward doubly stochastic delay differential equations (
shortly-BDSDDESs ) that has the following

YO =&+ [ (5. (8).2().Y,. Z)ds+ [ 9(s.Y (8).Z(5).Y, Z)AB(S) - [ Z()aW(s) @)
where {W,,0 <t <T} and {B,,0 <t <T} are a Brownian motion defined on the probability space (€2;, F. pl) and
(Qz’ F. Pz)' respectively, and T <o is a finite time horizon. The coefficients f and ¢ attime S and the terminal

condition & depend on the past values of a solution (Y,Z,) =(Y(S+6),Z(S+6)) 1. ,0-

In our work, we extend the approach of BDSDDEs in the general case, and introduce some general assumptions on the
numerical convergence of backward doubly stochastic differential equations with time delayed coefficients. Furthermore, we
present a numerical scheme based on iterative regression functions which are approximated by projection on vector space of
functions. Also, we discuss the numerical convergence and rate of convergence of BDSDDES Lipschitz condition.

The present paper is organized as follows: In section 2, we present some preliminaries that explain the approximation scheme
for BDSDDEs. In section 3, we consider the approximation solution of BDSDDEs and prove some problems that useful for our
work. In section 4, we have discussed the numerical convergence and rate of convergence of our scheme.

2 Notations, preliminaries and basic assumptions
In this section, we provide some assumptions and space used in the sequel. Therefore, we consider two independent standard

d-dimensional Brownian motions {W,,0 <t <T} and {B,,0 <t <T}, defined on the complete probability spaces

(Ql, F. Pl) and (QZ, F, Pz) , respectively, and a finite time horizon T < o0. We denote

FtBs =o{B, -B,,s<r< t}, F\tN =o{W.,0<r<t}.
Moreover, we consider Q=0 xQ,, F= E,® F, and P =p,® p, . In addition, we put
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Fi = F ® Ft,s® N,
where N is the collection of P -null sets of F .Thatis to say, the o —fields |:t LO<t<T,are P —complete,
and the family of o —algebras F = {Ft}tE[O‘T] is neither increasing nor decreasing, it is not constitute a filtration.

We consider the Euclidian norm |-| in R* and R, we use the following spaces
0
1. Let L%, (R“") is the space of measurable function Z :[-T,0] —R““ such that J:T | Z(t) ] dt <oo.
2. Let L” (R¥) is the space of measurable function Y :[—T,0] — R such that sup_.. ,|Y ()< oo,
T
3. Let HZ(R™) is the space of F -predictable processes Y :Qx[0,T]—R™ such that EIO | Y(t)]? dt <oo.
4. Let S2(R") isthe space of F -adapted, product measurable processes Y : Qx[0,T]—R" such that
E[supy.r | Y (1) ] < o0.
2 (pkxd 2 (pk . 2 _ (" 2

The spaces H;(R“") and S;(R") are done with the norm | Z ||Hi = E.[o |Z(t)|"dt and
Y ”28: = E[supy | Y (t) |1, respectively. In this paper, we consider the following BDSDE with time delayed coefficients

d(Yy(®) = f(tY(®),Z().Y,,Z)dt+g(tY (1), Z(1),Y,, Z)dB(t) - Z(t)dW (),0 <t <T,

Y =&(Y;,2Z;),-T<t<0,

where f and (¢ are Borel-measurable functions at time set depend on the past values of the solution

Y. =(Y(S+6)) 1.9 and Z, =(Z(S+6)) 1y We always set Z(t) =0 and Y (t) =Y (0) for t <O. Now, we
make the following assumptions
Assumption (H1): There exist a positive constant K1 andforall —7 <S<t<0 suchthat

E[lS() - £() 1<K (t-s).

Assumption (H2): Suppose that f :Qx[0,T]xR* xR¥ xL” (R*)xL*; (R*?) > R" and
g:Qx[0, TIxL"; (R*)x L2, (R") —>R“" are product measurable, there exist a positive constants K, , K, and

K, . and a finite measure & on [—7,0] such that

|F(YSZEYEZ - F (Y2, 22 Y2, Z2) P <K,(Y =Y2 P +]Z2 =27 )
KLY E+0) - Y2t +0) | a(do)

0
+j_T 12Xt +60) - Z2(t+0) | a(d6)).

and

|9 Y L ZE YA ZD — gt Y2 22 Y2 2 P K (Y - Y2 [ 4|28 - 22 )
+K (LY +0)-Y2(t+0)  a(do)

0 2 2
+[ 12 t+0)-Z*(t+6)  a(do)),

forall te[0,T],(Y",ZY),(Y?,Z2%) eR*xR" (Y}, Z1), (Y2, Z2) eL”, (R*)xL*; (R“).
Assumption (H3)

T 2 T 2
E jo | f(t,0,0,0,0) 7 dt < 0, E jo | 9(t,0,0,0,0) | dt < oo,

Assumption(H4)
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f (ti'y')'i') = Oy g(ti'i') = 01
for t<O0.
Assumption (H5): There exists a positive constant K5 such that
[ F(V.2) P vIg(Y,.Z) P<Ks(+]Y [P +]Z),
where av b =max{a,b}.

3 A numerical scheme for BDSDDEs
In this section, we propose a numerical scheme is based upon a descretization of (1). Moreover, for all integers n,| >1 and

te[0,T], let
—r=t,<t,,<--<0=t, <t <---<t, =T
be a partition of [—7,T], and denote

6= Ati+l =ty -t =

S |-

1<i<nAB, =B, -B, AW, =W, -W,_,
i+ i i+1 i+1 i

i+1 1

where i =0,1,-,-,n—1, and At = max_,<i<n_1Al; . Now, on the small interval [t;,t. ;] the equation

Y=Y, + f”lf(s,Y(s),Z(S),Y Z )d8+f‘”g(8,Y(S),Z(S),Ys,Z )dB(s)

s1%s S

—~ j:‘*lz (s)dW (s). @)

We can be approximated by the discrete equation

Ytin = Ytin+1 + Y (),.270),Y," (t+60),Z7 t+ )5+ g(t.Y;" (1), Z (1),Y;" (t + 0), Z]' (t + 0))ABy,,
- Zin (t)AWm’
with Y(T)=&(T) on —T <t < 0. Therefore, we consider a class of BDSDDES as the form
Yi"(t) = &(T) +IOT F(s.Y1"(5).Z7'(5), ;" (s +6), Z{ (s + 0))ds
+[[ 96 Y (5).27(5). % (s+6),Z] (5+6))dB(S) - [ 2/ (5)dW (s).
Now, let us define the Euler-Maruyama approximate solution by
V) =M+ [ £(s.(5).Z(s).Y (s+6). Z(s+6))ds
+[[ 96V (8).2(5).V (5+6).Z(s+6))dB(s) - [ Z(s)aW (s). @
Lemma 3.1 Assume the assumptions (H1)-(H4) hold, forall n =0,1,..., N —1, then it holds that
V=Y QanoZ) =, [[Z"(5)ds] = 220,

Proof. From equation

VYO =Y+ [ (5 XN ()., (6). 22 (9), X (5+60).Y," (s+6), 22 (s+0))ds

+["7g(s, XN ()., (5). 22 (8), X\ (s +6).," (5+6), 2} s+ 6))dB(s)
- ["1Z (5)aw(s)

n

where T, <t <t ,, we have that

VO =0+ [ (5 XN ()., (6). 22 (9), X (5+0).Y," (s+6), 22 (s+0))ds
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(s, XN (9).Y, (). 22 (), XN (s +0).Y," (s+6), Z) (5+0))dB(s)

15N
[Z) (e)dwes),
and then, we get that

V() =E L0+ 9 X 1Y, 0.2, (1), Xy ¢ +6),Y," (t+6), 2, (t+6))AB, ]
+hi @, XN, YN (), ZN (), XN (t+6), YN (t+6),Z" (t+06)).

From equation above, we deduce that

["ZM (5)dW(s)aW, =Y, (AW,
+ f””f (s, XN (s),Y.N(5), ZN(s), XN (s +6),Y.N (s+6),Z (s +6))dsAW,
(5, XN (9). Y, (5). 20 (), XN (5 +0).Y," (s+0), Z) (5+0))dB(S)AW,

=Y. (t)AW,,
By taking the expectation, we get that

E[[""Z" (s)dW(s)aW, ]
=E, [["1(s, XN )V (9.2 (5), KN (5+0) Y (5+6). Z) (s +0))dsAaW, ]
+E [[™9(s, XY (9).Y,"(5).2, (5), X' (s+60).Y," (5+6).Z)' (s +0)dB(5)AW, ]

+E VL OAW,]-E, [V, ()AW,].
Therefore, we deduce that
[ 7N (5)dW(S) AW, ]
=hE, [f(E X, ()Y,  1),2, ), X} (t+6),Y," (t+6),Z) (t+6)AW, ]
+E, [0t X7 .Y, (1,2, (1), X' t+6),Y," (t+6), 2 (t +6))AB,AW, ]
+ Etn [Y]Tl (t)AWn] - Etn [Y;N (t)AWn]’
then
15N o N 7N >N o N 7N >N
E,[["Z" (s)dW(s)AW, 1= E, [g(t, X} (©.Y," ©), Z) (©), X' (t+0),Y," (t+6), Z,' (t+6))AB,AW, ]
+E, [V 0AW,].
From the fact iN (t) and f(t, )Z,:\‘ (t),iN (1), ZnN (®), )Zr:\l (t+ 6’),?;“l (t+0), ZnN (t+0)) are F‘n -measurable, then
ELFEX) .Y 0.2) @), X} t+6).Y," (t+0),Z)' (t+0)AW,]= E, [Y," ()AW,]=0.

Therefore, we have that
t ~ ~
E, [ jt ™1ZN (s)dW(S)AW, ] = hZ N (t).
n
n
By taking the integration, we obtain that

E, [ Z" (S)aw(e)aw,] =€, [["*[ dW(w)Z" (s)aw(s)]
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+E [[ it [[Z" @aw(udw(s)]

+E [[ :MZ N (s)ds],
then
E, [ ‘:*12 " (5)W(s)AW, ] = E, [] tn“*lZ N (s)ds].
Therefore, we have that
7Nt = % e, [ 2" (5)cs).
From above equation, we get that

200 =T E 0L AW+ E [0 KO0 0,280 X €+ 0., €+0).Z) ¢+ 0)aB,AW, ]

Therefore, forall N =0,1,...,N —1, then (Y. (t),ZN(t)) = (Y," (t), Z (t)).

4 Main results
This section is devoted to discuss numerical convergence and rate of convergence of BDSDDEs.

Theorem 4.1 suppose that assumption (H2) is fulfilled. Likewise, assume that {Y " (t),Z" (t)} is a solution of equation

(3), then the approximated solution {Y "(t),Z"(t)} converges to the exact solution {Y (t), Z(t)} in the sense that for all

t €[0,T], such that
limE|Y(®)-Y"(t)[*=0
and

limE[ 1Z(®)-Z"®) dt=0.

N—o0

Proof. For all t€[0,T], let {Y;(t),Z;(t)} and {Y;"(t),Z" (t)} be the solution of equations (1) and (3), respectively.
Thereforeav(v; 2:)\/5:2?(0) =[f (Y, (t),Z,1t),Y.(t+0),Z,t+0)— f(t,Y," (), Z"1),Y,"(t+6),Z" (t+6))]dt
+[g(t,Y; (), Z,(t),Y,(t+6),Z (t+6))—g(t,Y."(t), Z" (t),Y,"(t + 6), Z (t + 6))]dB(t)
—[Z;(t) - Z" ()]dW (1).

Denote (@,b) is inner product of two vectors @ and b . Now, by applying lto’s formula to | Y, —Y;" |, we get that
Y. () =Y. (t) = 2J‘0T<Yi (5)=Y."(s), f(5,Y:(5),Z;(5),Y;(s+0),Z,(s+6))
—f(s,Y,"(s),Z](5),Y,"(s+0),Z (s +6)))ds
+[ 19 Y,0.Z,0).Y,(t+6),Z,(t+6))

—g(tY,"(1),Z" (0),Y,"(t+6),Z" (t+0)) | ds
+2.[0T<Yi (s)-Y,"(s),g(t,Y;(t), Z,(t),Y;(t+ O),Z (t + 8))
—g(t,Y.,"(t), Z] (t),Y.;"(t+0),Z (t+ 6))dB(s))
~2[ (,(5)=Y"(5).Z,(8) ~ Z (8)AW(S)).
By taking the expectation, we get that

EIY,()-Y"(0)F=2E[ (%,(5) Y/ (5), f (5.Y,(5). Z,().Y, (s +6), Z,(5+6))
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—f(s,Y,"(s),Z](5),Y,"(s+0),Z (s +6)))ds
+ EjOT 19t Y. (1), Z, (1), Y, (t+ 6), Z,(t + )
—g(t,Y,"(1),Z" (0),Y,"(t+6),Z" (t+0)) [ ds
F2E[ (%(9) =Y/ (5). (LY, (. Z,(1), Y, (t +6).Z,(t+6))
—g(t Y (), 2" (), Y, (t + 6), 2" (t + 0))dB(s))
~2[ (,(8)~Y"().Z,(5) ~ Z (8)AW(S)).

Making use of the Young’s inequality, we derive that

EIY,(0)-Y" )< 4KE[ [Y,(8) -/ () ds+ﬁ5ﬂ | £(5,Y,(5),Z,(5).Y, (s +0),Z;(s +0))

C(S,Y(5),Z7(5), Y. (s +6), Z" (s + O)) | dis
+E[ 19(5.%(9).2,(5).Yi(s+6).Z,(5+0))
—9(s,Y,"(s), 2] (5).Y," (s +0),Z] (s +0)) [* ds
+aKE[ [Y,(5) - () P ds+ﬁ E[ 1 9(5.Y,(8).Z,(5).Y, (5+ ), Z,(5+ 6)
—g(s,Y,"(s),Z"(s),Y,"(s+0),Z" (s +9)) | ds—i EJ'OT 1Y.(s)-Y,"(s)|* ds

-
—4KE jo 1Z.(s)=2"(s) [? ds.
By using assumption (H2), we have that

EIY,()-Y"(®) F< 4KE[ 1Y,(8)-Y,"(G) " ds+ﬁ E[K, 1Y,(5)-Y,"(5) [ ds
+ﬁ EL[ K[ [Yi(5+6) - (5+ ) a(dO)cs]

+ﬁ EL[ K[ 1Z(s+6)-Z (s+0) a(dO)cs]

+ EjOTK2 IY,(s)=Y."(s) ] ds

+ E[J:K4 j°T 1Y.(s+6)=Y"(5+6) [ 2(d6)ds]

+E['K, | Z,(5)-2Z](5) [ ds

VEI[ K[ 12,(5+0)-Z) (s +0) | a(d)ds]

+ﬁ ELTKZ 1Z.(5)~Z"(s) F ds

+4KEj0T 1Y, (s)~Y."(5) | ds+ﬁ EjOTK2 1Y,(s)~Y."(5) |2 ds

1 T n 2
+RELK2|Zi(s)—Zi (s) ds
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+ﬁ EL[ K[ ¥,(s+6) Y (s+O) P ar(dO)ds]
+ﬁ E[LTK4 [[12:s+6)-2)(s+O)F a(dO)ds]

_ L E[ 1Y,(5)-Y"(5) [ ds—4KE[ Z,(s)-Z/(5) [ ds
4K do i i o | <i i .
By changing the integration order, we obtain that

E[Y,(0)-Y,"(®) F< 4KE[ Y,(5)-Y,"() P ds+r—éEE 1Y,(s)=Y,"(s) [* ds
+f_é EIOT 1Z,(s)-Z"(s) | ds+;—é E[I_OTLT i (s+0)-Y," (s +0) [ dsa(d0)]
+f_é E[” [ 1Z,(5+0)~ 2] (s+0)  dsar(dO)] + KE[ Y,(5)-Y () ds
+K2ELT|Zi(s)—Zi”(S) 2 ds+ KAE[j_OTjOT|Yi(s+9)—vi“(s+e) 2 dsex(d6)]
+KE jOT jOT 1Z.(5+6)—Z" (s +6) |2 dscx(d6)] + AKE jOT 1Y.(s)=Y."(s) |2 ds
+f—é ELT 1Y,(8)=Y,"(s) | ds+f—é Ejolei(s)—Zi”(S) [* ds
+;—I2E[J._OTLT|Yi(s+6’)—Yi”(S+9) * dsa(do)]
+;<—I2E[J.OTLT|Zi(s+¢9)—Zi"(S+6’) [* dsa(do)]

1 T n 2 T n 2
—REL 1Y,(s)=Y,"(s)| ds,—4|<Ej0 | Z.(s)—Z"(s) ]? ds.

And then, we obtain that
E[Y, () -, () < 4KE[ [Y,(5)-Y," () P ds+:_é5 [ 1¥(®-Y" O ds
K2 T n 2 K4 0 (T+6 n 2

+ B[ 129 -2 ) ds+ LB [ 1Yi(9) =Y/ (9) dse(do)]
+ 2B [ 120~ 20O F dsaldo]+ K,EL Y0 -Y () ds
+KE[Z,(9)-2(5) F ds+KEL[ [ [Y,(5)-Y () dsax(do)]
+ K4E[_[_OT j;" 12,(5)~Z () [ dsa(de)]+4KE [ [Y,(5)~Y,"(s) " ds
+ 2 ZE[ IOV G ds 5 2EL1Z/(9)-2 (S ds
2B [ MO Y @) dsatdo))

1l [1712,)-209)F dsa(do)]
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——EJ' 1Y, (s)=Y,"(s) | ds— 4KEj 1Z.(s)-Z"(s)|? ds.

And then, we have that
E 1Y, 0¥ O F< 4KE]] 1Y,(9) - Y/ () ds+ 7 2E[[ 1Y,(9) -V (9 ds
Kz T n 2 K4ﬁ T n 2
o ZE[1Z/9-Z0 O F ds+ L[ 1Y,(6) Y (S)F s
L E12,9)-20OF ds+KE[ Y9 (5) ds
FKE[1Z,(9)-Z(5) P ds+ K, LE[ [¥,(8)- Y/ (5) F ds
+KPE[ 1Z,(5)-Z] (S)F ds+4KE[ |Y,(9)-Y,"(s) | ds
K2 T N 2 & T _=7n 2
LB IO -YOF o5+ 2 E[12,(9)-Z (9 ds
R LE[ @ - OF do+ L E12,9)-2 ) ds
—ﬁ E[ 1Y) -Y,"(s)  ds—4KE[ 1Z,(s)-Z/(s) [ s,
where ﬂ:ﬁa(dﬁ),
[ ¥ Fds< [ 1Y,(9) - Y/ (5) F ds

and

[126) -2/ Fds< [ 1Z,(9)-Z(9)F ds.

Therefore, we have that

K,B
EIY, (&)=Y, (t) <(8K+2K KK /3+—K——)Ej 1Y.(5)=Y,"(s) | ds

K, K _
+(2K+4K +K +K4ﬁ+ K 4K)Ej 1Z,(s)-Z"(s) [? ds.

By choosing
C, 8K+ 4'B+K +K4,B+K——i
2K 4K 4K 4K
and
C,=—%+ 4’BJFK +K +—
275k K S 4K

C,,C,>0 and C, <K, we deduce that

EIY;®)-Y"O < ClELT 1Yi(s)=Y,"(s) " ds+(C, —4K)EJ: |Z,(s)-Z(s)I” ds.
And then, we get that
EIY,O)-Y OF <CE[ Y- () o5
Now, using the Gronwall’s inequality, and forall i =0,---,n and t €[0,T], we drive that
lim E[max Y;®)-Y"®F1=0.

n—o
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Hence liMns. E Y () =Y "(t)|?=0, and consequently
imEf 1Z®-Z"®F dt=0

N—o0

Theorem 4.2 Assume the assumptions (H1)-(H5) are fulfilled, then it holds that
sup E|Y(®) =Y (t) +E[j |Z(s)-Z(s)|* ds]<C|5].

0<t<T
Proof. By applying 1t0'S formula | Y (t) Y (t)| , we have that

YO -YOF +[ 1Y©) -V (s) [ ds+ [ |Z(5)-Z(s) [ ds < | &) -E(T) [
+2j0T<Y (s)-Y (s), F(5,Y(5),Z(5),Y,, Z,) - f(5,Y (s), Z(S),Y., Z,))ds

[ 196Y(9.26).Y,.2.) - 96V (8).2(5). Y., Z) F ds

+2[ (V(5) =V (8).(9(5.Y (9).2(5). .. Z,) - (.Y (5). Z(5).V,, Z,))dB(S))
—2[ (Y ()~ Y (5),(Z(5) - Z (s))dW(s)),

where t €[0,T]. By Youn’s inequality and assumption (H2), we get that
RUCRIORIAMORIONATARHCMORION AN MORZOTR
SIS 6).260Y,2) - 15V (9).Z(9).V, Z) s
¥ 0
<y IY©)-YO ds%ﬂ[Kz Y(S) =Y () +K, 12(5)-Z(9)
+K j° |Y(s+ev)—\7(s+e)|2 a(dd)+K, j° |Z(s+9)—Z~(s+0)|2 a(dO)]ds
_yj Y(5) -V (5)F ds+ 2 j|v(s) Y(s)P ds+ 2 _[lZ(s) Z(s)[ ds
+ﬁﬁ° 1Y (s+0)-Y (5+0) ] a(da)ds+—4” 1Z(s+60)—Z(s+0) | a(dO)ds,
4 0J-T 4 0J-T

and

[ 19(6.Y(9).2().Y.,2) - 9(s.Y (8).Z(5). Y, Z) F ds < K, [ 1Y(9) -V (s) [ s
PR 1Z(8)-Z()F ds+K, [ [ 1Y (s+60) -V (s+6) [ ar(db)ds
+ KAJOTJ_OT 1Z(s+0)—Z(s+6) |2 a(dO)ds.

By changing of integration order argument, we obtain that

[ 1Y6+0)-V(s+O)F ad)ds=[" [ |Y(s+6)-¥(s+6) [ dsa(d6)
= [IYO-YO F dta(dd) < [ YO -T @) F dt,

d
) [ 12(s+0)-Z(s+O) [ a(dd)ds = [ [ |Z(s+6)~Z(s+6) ] dscx(d
[[.12(s+0)-Z(s+O) a(d)ds=[_[ |Z(s+6)-Z(s+06)[ dsa(dd)
=L 120-ZO F dta(do) < [} 120 -ZOF ot
1o o '
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where [ = Jia(d 6) . Therefore, we drive that
YO -Y O F +[ |Y(s)—V(s) Fds+ [ 1Z(s)-Z(9)F ds < £T) - E(T) P

+yj Y (5)=V () ds+ 2 » j 1Y (s)-Y (s) ] ds+—j 1Z(5)-Z(s)* ds

+ 4ﬁj |Y(s)—\7(s)|2ds+ij 1Z(5)-Z(s)* ds

y y
+K3E|Y(s)—\7(s)|2ds+K3LT|Z(s)—Z(s)|2ds
+K B[ 1Y(9) -V (5) P ds+ K B[ 1Z(5)-Z(s) s
+2[ (V(9)-V(9).(9(6.Y (5).2(5).Y..Z,) - 9(5.Y (). 2(5). Y, Z,))dB(s))
=2[ (Y (5)- Y (9), (Z(5) ~ Z(s)AW(s)).

Therefore, we have that

YO -Y O +[ |Y<s)—V(s) [ ds+ [ 12(5)-Z(S)* ds < £T) - EM) [

+yj Y (5)-V () ds+ 2 j|Y(s) Y(s)[? ds+—j 1Z(5)-Z(s) [ ds

+ 4ﬁj 1Y(s)-Y (s) ] ds+ij 1Z(5)-Z(s)? ds
y = y =

FK [ IYE) -V (S F ds+ K[ [ Z(s)-Z(s) [ s

+K B[ Y)Y ()P ds+K4ﬂIT|Z(S)—Z(s)|2 ds

+2/11j Y (5) -V ()P ds+ 2K ’ j 1Y(s)-Y (s)[? ds

—ﬂ:ﬂ [ 1Y©)-Y(s)Fds
+'2§:ﬁ LT 1Z(s)-Z(s) ds+2/12LT Y(8)-Y(s) [ ds

2 (T =
— | 1Z(s)=2Z(s) [ ds,
+j?j0| (8)-Z(s)[ ds

where /11, /12 >0, by taking the expectation and choosing

c =1 y—&—M—K ~K,B- 24———2K—4ﬂ—2/12
4 Y
and
CZ:1_&_K4ﬁ_K3_K4ﬂ_%_2K4ﬁ_2
Yooy A A A

we have that

EIYO)-YOF +CE[ [Y(9)-Y(9) ds+C,E[ 1Z(9)-Z(9) [ ds<E|&M) - M)

6313 |Page council for Innovative Research
June 2016 www.cirworld.com



ISSN 2347-1921
Volume 12 Number 06

Journal of Advances in Mathematics

For sufficiently small K, and K, choosing 7, 4,4, >0 such that C; >0 and C, >0, then there exists a constant
C >0 dependingon 7, K, K,,K;,K,, 5,4 and A, such that

~ T ~ T ~ ~
sup EY(®) YO +E[ [Y(8)-Y(8) [ ds+Ef |Z(5)-Z(5) ds<CE|&(T)~£(T) [ .8y
0<t<T
assumption (H1), we have that

sup E|Y(t)—\?(t)|2+EjOT|Z(s,)—Z(s,)|2 ds<C|5|.

0<t<T
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