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Mathematical model of vacuum freeze-drying in the secondary drying
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1. Introduction

The secondary drying is the last stage of the freeze-drying process which is a desorption step where the residual
moisture is reduced to a low level ensuring long-term product preservation at room temperature. At the condition of
vacuum, materials which are heated to sublimation during primary drying are heated up again during the secondary drying.
And the water taken away is mainly combined water in materials, and the energy is mainly used for desorption and
sublimation of combined water. However, after primary drying, there is a little of frozen water in materials that is sublimated
and taken away during the secondary drying process M The secondary drying is usually carried out at high vacuum and

moderate temperature

2. Mathematical model of the secondary drying

2.1 The energy equation and mass equations of the secondary drying

After the primary drying is finished, the process passes he secondary drying and the temperature is higher. There

is no frozen layer in the material consideration uniformly.
Then, there are sqge as
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Pde -density of material;
dee -effective thermal capacity of material;

AHV -heat of desorption of combined water;
Gt = Gw + Gi -total flow rate of the gas extracted from the material;
Guw -flow rate of water vapor;

Gin -flow rate of non-condensable gas;

d -density of dried layer during the secondary drying;
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Msw -ratio of desorbed combined water.

In the equation above, the last term represents the desorption during the secondary drying, which not only can’t be
ignored, but also is the most important term. M, means the ratio of solid combined water, while m;"w means the ratio of

solid combined water when the pressure of water vapor Py, is at equilibrium state. The principle that Mg, varies over

_ _ msw_]c . omg, ¢ . _ _
time can be shown: =1 (mSW - msw) or E =—T,m,, .The Mg, can be calculated approximately with the

equation: M, =exp{2.3[1.36-0.036(T —T°)]}/100, KQ yater /KD gry . T° means the initial temperature. And

fs and fd can be calculated by fitting experimental values and theoretical calculations.

The mass equation of water vapor of the secondary drying is:
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So we can find the complex effects of structure and other factors by K, Ko, Ksand K4 ™. And the mass balance partial

differential equations about P,, and ;, are shown as follows.
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2.2 Simplification of energy equation and mass equation of the secondary drying

In the secondary drying process, if diffusion is the only mass transfer way in porous dried layer, and the thermal
physics of materials is constant, the equation (1) can be simplified as follows.

2
OTd — au 0“Ta N Avad OMsw

ot K puCon 0t >t ;0<x<X o

And if the ratio of mass of removed water vapor in materials and increased temperature is constant, the following

equation is true .

W, W,
- =——g.C0Nns
or  T,-T,
Then, th atiol cal shown as fQHo
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