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Abstract 

A simple model is constructed in which the phenomenon of hydrophilic (𝐻𝜙𝐼) interactions may be studied exactly. This 
model reveals the origin of the strong 𝐻𝜙𝐼 interaction, as well as providing an approximate method of estimating its order 
of magnitude. The results are in agreementwith previous theoretical calculations, as well as with experimental data, and 
simulated calculations. The source of the non-additivity of the 𝐻𝜙𝐼 interactions among three and four 𝐻𝜙𝐼 interactions is 
examined. A few comments on the relevance of the 𝐻𝜙𝐼 interactions to the process of protein folding are discussed. 
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1. Introduction 

     In the late 1980s and early 1990s, a systematic study of all possible solvent-induced effects on protein folding was 
undertaken.

1-10
 One of the most unexpected discovery was that hydrophilic (𝐻𝜙𝐼) interactions, as defined in the next 

section, are much stronger than the corresponding hydrophobic (𝐻𝜙𝑂) interactions.  

     These findings have a profound effect on our understanding of some fundamental biochemical processes such as 
protein folding, protein-protein association and molecular recognition.

11-12
 Yet, in spite of the overwhelming evidence for 

these findings (from theoretical, experimental and simulations), they were largely ignored. If you open any modern 
textbook of biochemistry, biophysics or molecular biology, you will find statements about the “major importance of the 𝐻𝜙𝑂 
effect,” and on the “insignificant contribution of hydrogen bonding” in protein folding.

12
 

     I believe that there are two main reasons for the continual lingering of the myth about the importance of the 𝐻𝜙𝑂 in 
protein folding. 

     The first is that most people in the field, including myself, have spent many years in studying, teaching and applying the 
𝐻𝜙𝑂 effect, and it is very hard to deviate from the accepted paradigm regarding the dominance of the 𝐻𝜙𝑂 effect, even 
after strong evidence favoring the new paradigm involving 𝐻𝜙𝐼 effects became available. 

     The second reason is that both 𝐻𝜙𝑂 and 𝐻𝜙𝐼 effects are difficult to understand. As solvent-induced interaction the 
understanding of these effects depend on the knowledge of the notoriously difficult statistical mechanical theory of liquid 
water. 

     In 1959, Kauzmann
13

 had proposed a simple, intuitive and very appealing, some even claim convincing
12

 model for the 
𝐻𝜙𝑂 effect. This was the Gibbs energy change for the process of transferring a non-polar solute from water into an 
organic liquid. It was known that the Gibbs energy change in this transfer process is large and negative. Kauzmann 
realized the analogy between this transfer process and the process of transferring a 𝐻𝜙𝑂 group of a protein from being 
exposed to water into the interior of a protein, Figure 1. If each of these 𝐻𝜙𝑂 groups of a protein contributes about -2 to -3 
kcal/mol then one can expect a large negative change to the Gibbs energy of the process of protein folding. 

 

Figure 1. Kauzmann’s model: a) The process of transferring a non-polar solute from water into an organic liquid. 
b) The transferring of a non-polar group (blue) into the interior of the protein. 

Kauzmann’s model had captured the imagination and the conviction of most scientists.
14

 No doubt this is the reason that 
most textbooks claim that the 𝐻𝜙𝑂 effect is the most important one in the process of protein folding. 

     In 1990, I have shown that Kauzmann’s model was not adequate to the problem of protein folding.
2
 It was also 

shown
1,5

 that 𝐻𝜙𝐼 effects might be more important to protein folding. Unfortunately, the argument in favor of the 𝐻𝜙𝐼 
effects were not easy to grasp and to accept. There has also been much confusion in identifying the 𝐻𝜙𝐼 effects with 
direct intra-molecular hydrogen bonding (HB). 

     The purpose of this article is to first clarify the difference between various solvent induced effects involving 𝐻𝜙𝐼 groups, 
second, to reveal the origin of the strong 𝐻𝜙𝐼 effects, and to provide an estimate of the order of magnitude of these 
effects. Finally, we shall comment on the relevance of 𝐻𝜙𝐼 effects to protein folding.   

     To achieve this goal a simple and solvable model has been designed. This is described in section 3. It should be 
stressed that this is not a model for aqueous solution. The purpose of the model is to clarify the origin of the 𝐻𝜙𝐼 
interactions. In section 4, we discuss the 𝐻𝜙𝐼 interactions in real aqueous solutions. We show that the essence of the 
argument for the existence of strong 𝐻𝜙𝐼 in real systems is almost the same as in the simple model. Some concluding 
remarks are discussed in section 5. 
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2. Definitions and motivation for the constructing of a model for 𝑯𝝓𝑰 

          interactions  

    We consider a system of N water molecules at some temperature T and pressure P, and two solutes 1 and 2 at some 
fixed positions, and orientations in the solvent. The process of interest is to bring these two solutes from infinite separation 
𝑅 = ∞ to some close distance R, Figure 2.  

 

Figure 2. The process of bringing two solutes from fixed position at infinite separation to the final distance R. If 
the process is carried out both in an ideal gas phase and in the liquid phase, one gets the relationship between 

the solvent induced part of the Gibbs energy change and the solvation Gibbs energies of all the solutes involved. 

The Gibbs energy change for this process is the same as the potential of mean force (PMF) between the two solutes
1,12. 

This can be written as 

∆𝐺 𝑅 = 𝑊 𝑅 = 𝑈 𝑅 + 𝛿𝐺 

    = ∆𝑈 𝑅 + ∆𝐺1,2
∗ − ∆𝐺1

∗ − ∆𝐺2
∗  (2.1) 

where  𝑈 𝑅  is the pair potential between the two solutes in vacuum. Usually, we also need to specify the relative 
orientations of the two solutes but this will be done for each of the 𝐻𝜙𝐼 effects separately. 𝛿𝐺 is referred to as the solvent-
induced contribution to the Gibbs energy change. The latter can always be expressed in terms of solvation Gibbs energies 
of all the species involved in the process. The second equality can be derived either theoretically

12
 or simply from cyclic 

process in Figure 2. 

     When the solutes are hydrophobic (𝐻𝜙𝑂), say methane, ethane and the like, the quantity 𝛿𝐺 may be referred to as 
𝐻𝜙𝑂 interaction. This effect has been discussed in great detail in references 11 and 12 and will not be discussed here. 
When the solutes are hydrophilic (𝐻𝜙𝐼), such as methanol, ethanol, etc., we refer to 𝛿𝐺 as the 𝐻𝜙𝐼 interaction. We also 
apply the quantity 𝛿𝐺 for two 𝐻𝜙𝐼 groups, say hydroxyl, carbonyl or amine, attached to some backbone molecule. This is 
important in the application of the 𝐻𝜙𝐼 to protein folding. 

     We shall next specify several 𝐻𝜙𝐼 effects, some of these will be further studied within the model described in the next 
section. 

A. Formation of direct hydrogen bond(HB) between the two solutes 

The relevant process is depicted in Figure 3. 

 

Figure 3. The process of forming a direct HB between two  𝑯𝝓𝑰 groups in the water. 

 Two solutes are brought from infinite separation to a distance of about 𝑅~2.8Å, and with the correct orientations such that 
an HB is formed between the two solutes. The Gibbs energy change in this process is 

∆𝐺𝐻𝐵 = 𝑈 𝑅 + 𝛿𝐺 𝑅  

    = 𝜖𝐻𝐵 + ∆𝐺1,2
∗ − ∆𝐺1

∗ −∆𝐺2
∗ 

  ≈ 𝜖𝐻𝐵 −∆𝐺∗ 𝑜𝑛𝑒 𝑎𝑟𝑚 𝑜𝑓 1 − ∆𝐺∗ 𝑜𝑛𝑒 𝑎𝑟𝑚 𝑜𝑓 2  (2.2) 



ISSN 2321-807X 

164 | P a g e                                                             J u l y  2 0 ,  2 0 1 3  

     In this process the direct interaction is approximately equal to a HB energy, denoted 𝜖𝐻𝐵. The solvent induced part is 
essentially equal to the loss of the solvation Gibbs energy of one “arm” on solute 1, and one “arm” on solute 2. This 
approximation is equivalent to viewing the 𝐻𝜙𝐼 solute as consisting of a few “arms” along which a hydrogen bond may be 
formed. For instance, amine group NH has one arm, carbonyl group, 𝐶 = 𝑂 has two arms, hydroxyl group, OH has three 
arms and a water molecule has four arms. In writing the approximation (2.2) it is assumed that only the solvation of the 
arms involved in the formation of HB should be taken into account. It is also assumed that the solvations of different arms 
on a single solute are independent.

15
 Other parts of the molecules, the environment of which are unchanged will not 

contribute to the Gibbs energy change of the process.
1
 Of course, in reality one needs to distinguish between a donor and 

an acceptor arms, but for the purpose of this article we ignore this distinction. 

     The solvation Gibbs energy of one arm was estimated based on a simple model for water, as well as from experimental 
data to be about -2.25 kcal/mol.

11,12
 Taking 𝜖𝐻𝐵  to be of the order of -6 to -6.5 kcal/mol, we get for ∆𝐺 in (2.2) 

   ∆𝐺𝐻𝐵 ≅ −6.5 + 2 × 25 ≈ −2 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙                        (2.3) 

     This is significantly different from what is inferred from the so-called HB inventory argument which was discussed in 
great detail in reference 11, 12 and 16. It should be noted that most people when discussing 𝐻𝜙𝐼 effects in protein folding 
are actually referring to the process of formation of an intra-molecular HB by 𝐻𝜙𝐼  groups. Thus, the HB inventory 
argument has not only underestimated the contribution of intra-molecular HBing, but also has led to the dismissal of other, 
possibly more important 𝐻𝜙𝐼  effects as discussed below. 

B. 𝐻𝜙𝐼interaction between two 𝐻𝜙𝐼 groups at a distance of about 4.5Å 

     This is perhaps the most important 𝐻𝜙𝐼 effect in both protein folding and protein-protein association.
11,12

 Here, we 

consider the process of bringing two solutes from infinite separation to a distance 𝑅 ≈ 4.5Å, within the solvent. We also 
require that the orientations of these solutes is such that one arm of solute 1 and one arm of solute 2 can form HBs with 
one water molecule, Figure 4. 

 

Figure 4. The process, referred to as pairwise  𝑯𝝓𝑰 interaction. Two arms of either two solutes or one of two 

groups on protein are brought from infinite separation to a distance 𝑹 = 𝟒.𝟓Å, and an appropriate orientation so 
that they can form HBs with one water molecule. 

 The Gibbs energy change for this process is 

  ∆𝐺2
𝐻𝜙𝐼

 𝑅 ≈ 4.5Å = ∆𝑈 + 𝛿𝐺2
𝐻𝜙𝐼

 

≈ ∆𝐺1,2
∗  𝑜𝑓 𝑡𝑤𝑜 𝑎𝑟𝑚𝑠 𝑎𝑡 𝑡𝑕𝑒 𝑓𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − ∆𝐺1

∗ 𝑜𝑛𝑒 𝑎𝑟𝑚 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑒 1 − ∆𝐺2
∗ 𝑜𝑛𝑒 𝑎𝑟𝑚 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑒 2   

     (2.4) 

     In this process we assume that the direct interaction between the two 𝐻𝜙𝐼 groups is relatively small. As before, the 
solvent-induced part of ∆𝐺 is due only to the solvation of those parts of the solute which are changed in the process, 
specifically, the two arms on the two solutes. As in the process depicted in Figure 3, we assume that the types of arms 
(donor or acceptor) match when a HB is formed. 

     If we look superficially at the process as depicted in Figure 4, we see in both the initial and the final states, that the arm 
of solute 1 can form a HB with water molecule, and the arm of solute 2 can form a HB with water molecule. It is easy to 
conclude that the solvation of the two solutes will not change in the process, hence there is no reason to expect any 
significant solvent-induced effect in this process. We shall see in the next section that this conclusion is false. It arises 
from confusing a HB  energy with solvation Gibbs energy of a HBing arm. This is the same error committed in the HB-
inventory argument,

12
 and the main reason that has hindered understanding this 𝐻𝜙𝐼 effect. 

C. 𝐻𝜙𝐼 interaction between three 𝐻𝜙𝐼 groups 

     As an extension of the pairwise 𝐻𝜙𝐼 interaction discussed above considers the following process. We start with three 
𝐻𝜙𝐼 solutes (or groups on a protein) initially at infinite separation from each other, to a final configuration as shown in 
Figure 5. 
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Figure 5.  𝑯𝝓𝑰 process between three arms belonging to either three solutes or to three  𝑯𝝓𝑰 groups on a protein. 
Only the final configuration is shown. 

 At this configuration the three arms of the three 𝐻𝜙𝐼 solutes can form three HBs with a water molecule. The Gibbs energy 
change for this process is  

   ∆𝐺3
𝐻𝜙𝐼

= ∆𝑈 1, 2, 3 + 𝛿𝐺3
𝐻𝜙𝐼

      (2.5) 

     Again, we can assume that the direct interaction between the three solutes is relatively small and the main contribution 

to the Gibbs energy change is the indirect, solvent-induced part denoted  𝛿𝐺3
𝐻𝜙𝐼

. 

     A superficial examination of this process could lead to the erroneous conclusion that 𝛿𝐺3
𝐻𝜙𝐼

 should be negligible. The 

argument; three arms of the solutes form three HBs with water molecules in both the initial and the final state. Therefore, 
one would not expect a large contribution from this effect. As before the fallacy of this conclusion is confusing a HB energy 
with solvation Gibbs energy of a HBing arm of a 𝐻𝜙𝐼 solute (or group). We shall see in the next section the origin of this 

confusion, and also find that 𝛿𝐺3
𝐻𝜙𝐼

 is even larger than 𝛿𝐺2
𝐻𝜙𝐼

. We shall also see that 𝛿𝐺3
𝐻𝜙𝐼

 is not pairwise additive.  

D.  𝐻𝜙𝐼 interaction between four 𝐻𝜙𝐼 groups 

The final process that we shall study in the next section is the 𝐻𝜙𝐼interaction between four 𝐻𝜙𝐼  solutes or groups. We 
consider the process of bringing four 𝐻𝜙𝐼 solutes from infinite separation to the final configuration as depicted in Figure 6. 

 

Figure 6. 𝑯𝝓𝑰 process between four arms belonging to either four solutes or to three  𝑯𝝓𝑰 groups on a protein. 
Only the final configuration is shown. 

 The four 𝐻𝜙𝐼 solutes in the final configuration can form four HBs with a water molecule. The corresponding Gibbs energy 
change is 

   ∆𝐺4
𝐻𝜙𝐼

= ∆𝑈 1,2,3,4 + 𝛿𝐺4
𝐻𝜙𝐼

     (2.6) 

     We shall study this 𝐻𝜙𝐼 interaction in the next section within a simple model system. We shall see that this effect is 
larger than the 𝐻𝜙𝐼 interaction between three 𝐻𝜙𝐼 groups. We shall also see that this 𝐻𝜙𝐼interaction is not pairwise 
additive. 
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E.   Other stronger and longer range 𝐻𝜙𝐼 interactions 

     There is a host of other solvent induced interactions, some are stronger than the ones discussed above, and some 
have longer range. We shall not discuss these in this article. They were discussed in detail in reference 12. 

3.   A “minimal” model showing the origin of the  𝑯𝝓𝑰 interactions 

     The model described below was specifically designed so that it is simple enough to be exactly solvable, yet contains 
enough features that enable us to study the molecular origin of the 𝐻𝜙𝐼 effects, to estimate the order of magnitude of 
these effects, and to examine the source of the non-additivity of the 𝐻𝜙𝐼 effects. It should be emphasized, however that 
we do not consider this model to be reliable for estimating the 𝐻𝜙𝐼effects in real aqueous solutions. It is used here for 
demonstrating the origin of the various effects. The estimated values of the  𝐻𝜙𝐼 effects will be done in the next section 
(see also reference 12). 

     As we have seen in the previous section all of the  𝐻𝜙𝐼 interactions may be expressed as differences in solvation 
Gibbs energies of solutes at various configurations. Each solvation Gibbs energy of a solute s has the form

11,12 

  ∆𝐺𝑠
∗ = −𝑘𝐵𝑇𝑙𝑛 𝑒𝑥𝑝 −𝛽𝐵𝑠  0        (3.1) 

     Here, 𝑘𝐵 is the Boltzmann constant, T the absolute temperature. 𝛽 =  𝑘𝐵𝑇 
−1. 𝐵𝑠 is the binding energy, i.e. the total 

interaction energy of the solute s with all solvent molecules at a specific configuration 𝑿𝑁 = 𝑿1 ,⋯ , 𝑿𝑁 , i.e, 

𝐵𝑠 𝑿𝑠 =  𝑈 𝑿𝑠 ,𝑿𝑖 
𝑁
𝑖=1                                      (3.2) 

where 𝑈 𝑿𝑠 ,𝑿𝑖  is the solute-solvent pair potential. 

     The average   0 in (3.1) is over all possible configurations of the solvent molecules with the probability distribution of 
water molecules in the absence of the solute s. 

   𝑒𝑥𝑝 −𝛽𝐵𝑠  0 =  ⋯ 𝑒𝑥𝑝 −𝛽𝐵𝑠 𝑃0 𝑿
𝑁 𝑑𝑿𝑁          (3.3) 

where 

   𝑃0 𝑿
𝑁 =

𝑒𝑥𝑝  −𝛽𝑈𝑁 𝑿𝑁  

 ⋯ 𝑒𝑥𝑝  −𝛽𝑈𝑁 𝑿𝑁   𝑑𝑿𝑁
          (3.4) 

     In (3.3) we have taken the average in the (T, V, N) ensemble, whereas in (3.1) one should take the average in the T, P, 
N ensemble. However, in actual aqueous systems we can neglect the difference between the Gibbs and the Helmholtz 
energy of the solvation.

11 

     As we can see from (3.1) the solvation Gibbs energy depends on the solute-solvent interaction through 𝐵𝑠, and the 

solvent-solvent interaction through the distribution function 𝑃0 𝑿
𝑁  in (3.4). For the study of the 𝐻𝜙𝐼 interactions we need 

to examine the difference between solvation Gibbs energies. In such difference the more important factor is the solute-
solvent interaction. Therefore, in the model described below we take into account only solute-solvent interactions and 
neglect solvent-solvent interaction. The latter assumption renders the solvability of the model. 

 

Figure 7.A 2D system of M cells, and N water-like molecules. 

     We consider a lattice system of M cells and N water-like molecules (N<M). Figure 7 shows a 2D depiction of the 
system. Each cell can be occupied only by one water molecule at a fixed point, i.e. it lacks translational degrees of 
freedom. Each water molecule has four arms along which it can form HB with an arm of a solute molecule, but we neglect 
HBing between water molecules. We further assume that each water molecule can be in one of n different orientations. 
For example, Figure 8 shows the case of n=10 and the configurations are described by the angle 𝛼𝑖 

𝛼𝑖 = 𝑖
𝜋

40
        (3.5) 
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i=0 corresponds to the configuration on the lhs of Figure 8, and i=10 corresponds to a rotation by an angle of 𝜋/4, which 

brings the molecule to the equivalent configuration of i=0.

 

Figure 8. All possible orientations of the “water” molecule with n=10. i=0 corresponds to the left hand 
configuration, i=10 is identical to i=0. 

     The canonical partition function (PF) of the pure solvent is thus 

     𝑄𝑂 =  
𝑀
𝑁
 𝑞𝑁      ,     where q=n          (3.6) 

We now place a solute at a fixed cell. The solute has one arm along which it can form a HB with another solute or with one 
water molecule being in the correct orientation. 

     For a system of N water molecules and one solute at a fixed cell and having a fixed orientation, the partition function is 

𝑄1 =  𝑒𝑥𝑝 −𝛽𝜖𝑖 𝑖             (3.7) 

     In this system there are only two energy levels; either the solute forms a HB with a water molecule, or not. We assume 
that the water molecule can form a HB with the solute molecule only when it is in one out of the n orientations, say i=0 in 
Figure 8. In this case, the PF has the form 

𝑄1 =  
𝑀 − 2
𝑁 − 1

 𝑛𝑁−1𝑒𝑥𝑝 −𝛽𝜖𝐻𝐵 +  
𝑀 − 2
𝑁 − 1

 𝑛𝑁−1 𝑛 − 1 +  
𝑀 − 2

𝑁
 𝑛𝑁  (3.8) 

     The first terms on the rhs of (3.8) corresponds to all configurations for which a HB is formed between the solute and a 
water molecule. The second term corresponds to all configurations for which a water molecule is in the cell next to the arm 
of the solute but it does not form HB. The third term is the total number of configurations for which there is no water 
molecule at the site next to the arm of the solute. 

     The Gibbs energy change for placing a solute at a fixed cell in this system is thus 

   ∆𝐺𝑠
∗ 𝑎𝑡 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑐𝑒𝑙𝑙 = −𝑘𝐵𝑇𝑙𝑛

𝑄1

𝑄0
       (3.9) 

For very large N and M we get from (3.9) 

   ∆𝐺𝑠
∗ 𝑎𝑡 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑐𝑒𝑙𝑙 = −𝑘𝐵𝑇𝑙𝑛 1 − 𝜃  

−𝑘𝐵𝑇𝑙𝑛 𝑒𝑥𝑝 −𝛽𝜀𝐻𝐵 
𝜃

𝑛
+ 1 −

𝜃

𝑛
        (3.10) 

where  𝜃 = 𝑁/𝑀 is the fraction of cells occupied by water molecules. This is also the probability of finding a water 
molecule at a specific cell. The first term on the rhs of (3.10) is the Gibbs energy change to form a “cavity” in the system, 
which in our case is an empty cell. This is also the limit of ∆𝐺𝑠

∗ in (3.10) for the case 𝜀𝐻𝐵 = 0, hence 

 ∆𝐺𝑠
∗ 𝑎𝑡 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑐𝑒𝑙𝑙, 𝑎𝑛𝑑 𝜀𝐻𝐵 = 0  = −𝑘𝐵𝑇𝑙𝑛 1 − 𝜃        (3.11) 

     In a real solvent this is the so-called “cavity work”.
11,12 

Here, it is the work required to find a cell empty. This is zero 
when 𝜃 → 0, but it is infinite when 𝜃 → 1, i.e. all cells are occupied. Note also that this quantity is essentially entropic, and 
it does not depend on the interactions in the system. 

     For the next analysis we shall not need the “cavity work” term. This will always cancel out in the process of 𝐻𝜙𝐼 
interactions between 𝐻𝜙𝐼 groups on a protein. We always take into account the conditional solvation Gibbs energy of the 
group

11,12
, see also section 4. 

     We now examine the Gibbs energy change for the processes discussed in section 2. To get an order of magnitude for 
the different terms involved we rewrite the solvation Gibbs energy of one arm of a solute as 

 ∆𝐺1
∗ 𝑜𝑛𝑒 𝑎𝑟𝑚 = −𝑘𝐵𝑇𝑙𝑛 𝑒𝑥𝑝 −𝛽𝜀𝐻𝐵 𝑃𝐻𝐵 +  1 −𝑃𝐻𝐵    (3.12) 

where  𝑃𝐻𝐵 = 𝜃/𝑛 is the probability of finding a water molecule at the right cell next to the solute’s arm  𝜃 =
𝑁

𝑀
 , and that 

the water molecule is in the right configuration to form a HB,  
1

𝑛
 . To get a feel for an order of magnitude of the various 

terms in (3.12) we take 𝑅 = 1.987𝑐𝑎𝑙/𝑚𝑜𝑙 K,𝑇 = 298𝐾 and 𝜀𝐻𝐵 ≈ −6.5 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. We also know the experimental, as well 
as the theoretical value of the (conditional) Gibbs energy of solvation of one arm which is about −2.25𝑘𝑐𝑎𝑙/𝑚𝑜𝑙.11,12

 
Therefore, from the equality 

−𝑅𝑇𝑙𝑛 𝑒𝑥𝑝 −𝛽𝜀𝐻𝐵 𝑃𝐻𝐵 +  1 −𝑃𝐻𝐵  = −2.25 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙       (3.13) 
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we get, for 𝜀𝐻𝐵 = −6.5𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 

𝑃𝐻𝐵 ≈ 0.0007 

and for 𝜀𝐻𝐵 = −6 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 

𝑃𝐻𝐵 ≈ 0.0017 

For the process of 𝐻𝜙𝐼 interactions between two arms as depicted in Figure 9, we have 

𝛿𝐺2
𝐻𝜙𝐼

= −𝑘𝐵𝑇𝑙𝑛 
𝑒𝑥𝑝  −𝛽2𝜀𝐻𝐵  𝑃𝐻𝐵 + 1−𝑃𝐻𝐵  

 𝑒𝑥𝑝  −𝛽𝜀𝐻𝐵  𝑃𝐻𝐵 + 1−𝑃𝐻𝐵   2
         (3.14) 

 

Figure 9. The process of pairwise  𝑯𝝓𝑰 interaction between two arms of two solutes in the model system. 

First we examine two limiting cases: 

1.When 𝑃𝐻𝐵 → 0. This can occur either when the density of water is too low  𝜃 → 0 , or that n is very large  
1

𝑛
→ 0 . In this 

limit, as expected, there is no solvent-induced effect, i.e.                                                            𝛿𝐺2
𝐻𝜙𝐼

→ 0  

   

2.   When 𝑃𝐻𝐵 → 1. This can occur when nearly all the cells are occupied by water molecules  𝜃 ≈ 1 , and that there is 
only one configuration  𝑛 = 1 . In this limit we also have 

   𝛿𝐺2
𝐻𝜙𝐼

= −𝑘𝐵𝑇𝑙𝑛 
𝑒𝑥𝑝  −𝛽2𝜀𝐻𝐵  

𝑒𝑥𝑝  −𝛽2𝜀𝐻𝐵  
 = 0   (3.15) 

     If each arm forms a HB in both the initial and the final configuration, then we break to HBs and make two HBs and 
therefore the net effect is 𝛿𝐺 = 0. This is essentially the origin of the confusion that exists between the formation of a HB 
and the solvation by HBs. 

     In reality the HB energy is different from the Gibbs energy of solvation of an arm. To see the origin of the 𝐻𝜙𝐼  
interactions we take the case of 𝑃𝐻𝐵 ≪ 1, but 𝑒𝑥𝑝 −𝛽𝜀𝐻𝐵  𝑃𝐻𝐵 ≫ 1, hence (3.14) reduces to 

 𝛿𝐺2
𝐻𝜙𝐼

= −𝑘𝐵𝑇𝑙𝑛 
𝑒𝑥𝑝  −𝛽2𝜀𝐻𝐵  𝑃𝐻𝐵

𝑒𝑥𝑝  −𝛽2𝜀𝐻𝐵  𝑃𝐻𝐵
2  = +𝑘𝐵𝑇𝑙𝑛𝑃𝐻𝐵         (3.16) 

     Thus, for small value of 𝑃𝐻𝐵 (but not too small), we see that the main origin of the  𝐻𝜙𝐼 effect is that in the initial state 

the solvation Gibbs energies of the two solutes involve the factor 𝑒𝑥𝑝 −𝛽2𝜀𝐻𝐵 , and the probability 𝑃𝐻𝐵
2 , i.e. two water 

molecules must be in the correct configuration to form HBs with the two solutes. On the other hand, in the final 
configuration we also have the factor 𝑒𝑥𝑝 −𝛽2𝜀𝐻𝐵 , but now only one probability factor 𝑃𝐻𝐵. 

     The case discussed above reveals the main origin of the occurrence of  𝐻𝜙𝐼 interaction. We shall further discuss the 
general case in the next section. Thus, if we take the value of 𝑃𝐻𝐵 estimated from (3.12) we get for the 𝐻𝜙𝐼  interaction in 
(3.16), for 𝜀𝐻𝐵 = −6𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 

𝛿𝐺2
𝐻𝜙𝐼

= 𝑘𝐵𝑇𝑙𝑛𝑃𝐻𝐵 ≈ −3.7𝑘𝑐𝑎𝑙/𝑚𝑜𝑙                                     (3.17) 

and for 𝜀𝐻𝐵 = −6.5 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 

   𝛿𝐺2
𝐻𝜙𝐼

= 𝑘𝐵𝑇𝑙𝑛𝑃𝐻𝐵 ≈ −4.3𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 

     This result is quite significant. It shows that for a HB energy of about 𝜀𝐻𝐵 = −6 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙, the 𝐻𝜙𝐼 interaction is of the 
order of about −3 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. This is quite similar to the value of the  𝐻𝜙𝐼 interaction which was estimated from either 
theory or experimental data

11,12
. For more realistic estimates see next section. 
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Figure 10. Values of 𝜹𝑮𝟐
𝑯𝝓𝑰

 calculated for T = 298K and 𝜺𝑯𝑩 = −𝟔𝒌𝒄𝒂𝒍/𝒎𝒐𝒍, as a function of the probability 𝑷𝑯𝑩.  a) 

For large 𝑷𝑯𝑩, b) For very small 𝑷𝑯𝑩, and c) For the range 𝟎 ≤ 𝑷𝑯𝑩 ≤ 𝟎.𝟎𝟎𝟏. 

     Figure 10 shows the values of 𝛿𝐺2
𝐻𝜙𝐼

 as a function of 𝑃𝐻𝐵 for 𝑇 = 298𝐾 and 𝜀𝐻𝐵 = −6 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. We see that in both 

limits 𝑃𝐻𝐵 → 0, and 𝑃𝐻𝐵 → 1𝛿𝐺2
𝐻𝜙𝐼

 is zero. However, for small values of 𝑃𝐻𝐵, we can obtain strong  𝐻𝜙𝐼 interactions, which 

are of the same order of magnitude as the HB energy. 

 

Figure 11. a) The temperature dependence of 𝜹𝑮𝟐
𝑯𝝓𝑰

 for two values of 𝑷𝑯𝑩. b)   The same as a, but for 𝜹𝑮𝟑
𝑯𝝓𝑰

. c)   

The same as a, but for 𝜹𝑮𝟒
𝑯𝝓𝑰

. 

     Figure 11a shows the dependence of 𝛿𝐺2
𝐻𝜙𝐼

 on the temperature for two values of 𝑃𝐻𝐵. 

     We next examine the  𝐻𝜙𝐼 interaction between three solutes, or three arms on three groups of a protein. As before, in 

the two limits 𝑃𝐻𝐵 → 0, and 𝑃𝐻𝐵 → 1 we have:  𝛿𝐺3
𝐻𝜙𝐼

→ 0 . 

     However, for a small value of 𝑃𝐻𝐵, but not too small we can write 𝛿𝐺3
𝐻𝜙𝐼

 as 

   𝛿𝐺3
𝐻𝜙𝐼

= −𝑘𝐵𝑇𝑙𝑛 
𝑒𝑥𝑝  −𝛽3𝜀𝐻𝐵  𝑃𝐻𝐵

𝑒𝑥𝑝  −𝛽3𝜀𝐻𝐵  𝑃𝐻𝐵
3  = 𝑘𝐵𝑇𝑙𝑛𝑃𝐻𝐵

2         (3.18) 

     From (3.18) we see the main origin of the 𝐻𝜙𝐼   interaction between the three  𝐻𝜙𝐼  solutes, or  𝐻𝜙𝐼  groups. As in eq. 
(3.16) we have here three HBs in the initial and the final states. However, the probability of finding water molecules in the 

correct position and orientation is 𝑃𝐻𝐵  in the final state, but 𝑃𝐻𝐵
3  in the initial state. 

     Figure 11b shows some values of 𝛿𝐺 3
𝐻𝜙𝐼 . Note that the values of 𝛿𝐺 3

𝐻𝜙𝐼  are about twice as large compared with 

𝛿𝐺 2
𝐻𝜙𝐼 . 

     For the  𝐻𝜙𝐼  interaction between four  𝐻𝜙𝐼  groups we have approximately  

  𝛿𝐺3
𝐻𝜙𝐼

= −𝑘𝐵𝑇𝑙𝑛 
𝑒𝑥𝑝  −𝛽3𝜀𝐻𝐵  𝑃𝐻𝐵

𝑒𝑥𝑝  −𝛽3𝜀𝐻𝐵  𝑃𝐻𝐵
3  = 𝑘𝐵𝑇𝑙𝑛𝑃𝐻𝐵

3  (3.19)                                                     

     Figure 11c shows values of 𝛿𝐺 4
𝐻𝜙𝐼  as a function of temperature. Note that the values of 𝛿𝐺 4

𝐻𝜙𝐼  are larger than those 

of 𝛿𝐺 3
𝐻𝜙𝐼  and of 𝛿𝐺 2

𝐻𝜙𝐼 , but they are not equal to four times the values of 𝛿𝐺 2
𝐻𝜙𝐼   as one would have expected had the  

𝐻𝜙𝐼  interactions been pairwise additive. 

     Finally, we address the question of additivity of the  𝐻𝜙𝐼  interaction. This is an important aspect of any solvent-
induced effect. It has been discussed in connection with the  𝐻𝜙𝐼  interactions in reference 16. Here, we examine the non-
additivity of the  𝐻𝜙𝐼  interaction within the simple model system. 

     We define the extent of non-additivity with respect to pairs of  𝐻𝜙𝐼  groups as 

    ∆𝐺𝑁𝑂𝑁 −𝐴𝐷𝐷
3 = 𝛿𝐺 3

𝐻𝜙𝐼 − 3𝛿𝐺 2
𝐻𝜙𝐼  
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∆𝐺𝑁𝑂𝑁 −𝐴𝐷𝐷
4 = 𝛿𝐺 4

𝐻𝜙𝐼 − 4𝛿𝐺 2
𝐻𝜙𝐼           (3.20) 

 

Figure 12.The extent of non additivity of a) 𝜹𝑮 𝟑
𝑯𝝓𝑰  and b) 𝜹𝑮 𝟒

𝑯𝝓𝑰 . 

     Figure 12 shows the values of the extent of non-additivity for three and four  𝐻𝜙𝐼  groups. As can be seen from Figure 
12 the non-additivity of the  𝐻𝜙 𝐼  interactions are positive and of the same order of magnitude as  𝛿𝐺  . 

     To conclude, we have seen that we can demonstrate the origin of some  𝐻𝜙𝐼  effects in an extremely simple model. 
We do not consider this to be a realistic model. However, it is remarkable that the estimated values obtained from this 
model are of similar order of magnitude as in a real system. 

4. The  𝑯𝝓𝑰  interaction for real solutes in liquid water 

     We consider again a system of N water molecules in a volume V and temperature T. The solvation Helmholtz energy of 
a solute s is given by 

    ∆𝐴 𝑠
∗ = −𝑘 𝐵𝑇𝑙𝑛  𝑒𝑥𝑝  −𝛽𝐵𝑠   0          (4.1) 

     The solute s is assumed to have at least one arm along which it can form a HB with water molecules. We write the 
solute-solvent pair potential as 

𝑈 𝑿𝑠 ,𝑿 𝑖  = 𝑈∗∗ 𝑿𝑠 ,𝑿 𝑖  + 𝑈𝐻𝐵  𝑎𝑟𝑚 ,𝑿 𝑖             (4.2) 

where 𝑈𝐻𝐵  𝑎𝑟𝑚 ,𝑿 𝑖   is the HB part of the interaction associated with the particular arm we are considering. 𝑈∗∗ is defined 
in equation (4.2). The total binding energy can be written as 

𝐵 𝑠 =  𝑈𝑖  𝑿𝑠 ,𝑿 𝑖  = 𝐵 𝑠
∗∗ + 𝐵 𝑠

𝐻𝐵  𝑎𝑟𝑚                                           (4.3) 

and the solvation Helmholtz energy of the solute may be split into two terms
11,12 

 ∆𝐴 𝑠
∗ = ∆𝐴 𝑠

∗∗ + ∆𝐴 𝑠
𝐻𝐵 /∗∗

 

= −𝑘 𝐵𝑇𝑙𝑛   𝑒𝑥𝑝  −𝛽𝐵 𝑠
∗∗  0 𝑒𝑥𝑝  −𝛽𝐵𝑠

𝐻𝐵   ∗∗  (4.4) 

     The meaning of the two terms on the rhs of (4.4), correspond to splitting the solvation process of the solute s into two 
steps. First, we solvate the 𝑈∗∗ part of the interaction, the corresponding Helmholtz energy of solvation is ∆𝐴 𝑠

∗∗. Next, we 
solvate the HBing of the arm. The corresponding work is the conditional solvation Helmholtz energy of the arm given that 
all other parts of the interactions were already solvated. 

     A particular simple case is when the solute s  is a hard sphere plus one arm. In this case 𝑈∗∗ is simply the hard sphere 
pair potential. The corresponding solvation Helmholtz energy for this solute is 

   ∆𝐴 𝑠
∗ = ∆𝐴 𝑠

𝐻𝑆 + ∆𝐴 𝑠
𝐻𝐵 /𝐻𝑆

 

                  = −𝑘 𝐵𝑇𝑙𝑛  𝑒𝑥𝑝  −𝛽𝐵𝑠
𝐻𝑆   0 − 𝑘 𝐵𝑇𝑙𝑛  𝑒𝑥𝑝  −𝛽𝐵𝑠

𝐻𝐵   𝐻𝑆   (4.5)  

      In (4.5) the first term is the solvation Helmholtz energy of a hard sphere, or the cavity work. This is the analog of the 
work required to find an empty cell in equation (3.10). The second term is the conditional solvation Helmholtz energy of the 
HBing of an arm given that the hard part of the interaction has already been solvated. 

     As we have done in section 3, we focus on the change in the conditional solvation of one arm on each solute, or on the 
group of the protein. 

     Focusing on the second term of either eq. (4.4) or (4.5) we can simplify the average quantity as follows: 

   𝑒𝑥𝑝  −𝛽𝐵𝑠
𝐻𝑆   𝐻𝑆 =  𝑒𝑥𝑝  −𝛽𝐵𝑠

𝐻𝑆  𝑃  𝑿𝑁 𝐻𝑆   𝑑𝑿𝑁 (4.6) 

where 𝑃 𝑿𝑁 𝐻𝑆    is the conditional distribution of the configuration 𝑿𝑁  of the water molecules, given the HS at some 

specific location in the solvent. For the more general case, the conditional distribution is 𝑃 𝑿𝑁 𝐵𝐵    where the condition is 

the presence of the backbone (BB) of the protein. 
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     The advantage of focusing on the conditional average in (4.6) is that now the integral can be split into two regions, in 
one the integration is over all configurations of water molecules such that there is one water molecule at the correct 
configuration near the arm to form a HB. The second includes all other configurations. 

     This can easily be seen by rewriting the average in (4.6) as 

    𝑒𝑥𝑝  −𝛽𝐵𝑠
𝐻𝐵   𝐻𝑆 =  𝑒𝑥𝑝  −𝛽𝜈  𝑃  𝜈  𝑑𝜈

∞

−∞
                 (4.7) 

where  𝑃 𝜈   is the distribution of the values of the binding energies of the solute, i.e. 

𝑃 𝜈  =  𝑃 𝑿𝑁 𝐻𝑆   𝛿  𝐵𝑠  𝑿
𝑁 − 𝜈  𝑑𝑿𝑁                 (4.8) 

     Thus, 𝑃 𝜈  𝑑𝜈  is the probability of finding the binding energy of the solute between 𝜈  and 𝜈 + 𝑑𝜈 11 

     A water molecule can form a HB with the arm only from a small region of the configurational space. Therefore, we 
rewrite the integral in (4.6) or (4.7) approximately in two terms 

   𝑒𝑥𝑝  −𝛽𝐵 𝑠
𝐻𝐵   𝐻𝑆 ≈ 𝑒𝑥𝑝  −𝛽𝜀 𝐻𝐵  𝑃𝐻𝐵 +  1 − 𝑃𝐻𝐵                              (4.9) 

     Here we assume that the integrand can have only two values; when the arm is hydrogen bonded we have 𝜈 = 𝜀 𝐻𝐵 , 
and when it is not hydrogen bonded 𝜈 = 0. 𝑃𝐻𝐵  is the probability of finding a water molecule in the correct location and 
the correct orientation to form a HB with the arm. The probability of the complementary event is  1 −𝑃𝐻𝐵  . As in section 3, 
the probability 𝑃𝐻𝐵  depends both on the density and on solvent-solvent interactions. This has important consequences 
regarding the entropy and the enthalpy changes associated with the 𝐻𝜙𝐼  interaction. This aspect will be discussed briefly 
in the next section. 

     For estimating the value of 𝛿𝐺 2
𝐻𝜙𝐼  the argument provided in section 3 is essentially the same with one important 

difference. Using the expression (4.9) for the conditional solvation for the initial and the final configurations we get the 
approximate expression 

  𝛿𝐺 2
𝐻𝜙𝐼 ≈ −𝑘 𝐵𝑇𝑙𝑛  

𝑒𝑥𝑝  −𝛽2𝜀 𝐻𝐵  𝑃𝐻𝐵
(2)

+ 1−𝑃𝐻𝐵
(2)

 

 𝑒𝑥𝑝  −𝛽𝜀 𝐻𝐵  𝑃𝐻𝐵
(1)

+ 1−𝑃𝐻𝐵
(1)

  
2                          (4.10) 

     This is almost the same as equation (3.16) except for one important difference. In the model used in section 3 we have 

assumed that the probability of finding a water molecule in the correct configuration to form a HB with one arm, 𝑃𝐻𝐵
(1)

, is the 

same as the probability of finding a water molecule in the correct configuration to form two HBs with the two arms, 𝑃𝐻𝐵
(2)

. 

However, in reality these two probabilities are different. Using a very simple model for water (denoted BN3D in reference 

11) we have estimated that the ratio of 𝑃𝐻𝐵
(1)

/𝑃𝐻𝐵
(2)

 is about 360/20, i.e. 𝑃𝐻𝐵
(2)

 is smaller than 𝑃𝐻𝐵
(1)

 by a factor of about 18. This 

is due to the fact that in 𝑃𝐻𝐵
(1)

 we take into account the full rotation about the axis along which a single bond is formed, see 

Figure 13a. On the other hand only a small fraction of these configurations contribute to the formation of two HBs, Figure 
13b. 

 

Figure 13.  Rotation about the axis connecting the centers of the water molecule and the solute do not affect the 
HB between the water and the solute’s arm (a). On the other hand only a small fraction of these configurations are 

such that two HBs can be formed with two solutes (b). 

     Assuming again that 𝑃𝐻𝐵
(1)

 and 𝑃𝐻𝐵
(2)

 are small compared to 1 and that the factor 𝑒𝑥𝑝  −𝛽𝜀 𝐻𝐵  𝑃𝐻𝐵
(1)

 is large compared 

with one, we can get a rough estimate; for  

𝜀 𝐻𝐵 = −6𝑘𝑐𝑎𝑙 /𝑚𝑜𝑙 . 

𝛿𝐺 2
𝐻𝜙𝐼 ≈ −𝑘 𝐵𝑇𝑙𝑛

𝑃𝐻𝐵
(2)

𝑃𝐻𝐵
(1) 2

≈ −2𝑘𝑐𝑎𝑙 /𝑚𝑜𝑙  

and for 𝜀 𝐻𝐵 = −6.5𝑘𝑐𝑎𝑙 /𝑚𝑜𝑙  

𝛿𝐺 2
𝐻𝜙𝐼 ≈ −2.6𝑘𝑐𝑎𝑙 /𝑚𝑜𝑙                                        (4.11) 
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     This is almost the same value we got almost 20 years ago
1 

using a simple model for water and a more lengthy 
argument

1,12 

5. Discussion and conclusions 

     Ever since a complete inventory of all possible solvent-induced effects in protein folding has been established it 
became clear that the role of the hydrophobic  𝐻𝜙𝑂  effect in protein folding was grossly exaggerated.

2,6
 The main reasons 

for this is that Kauzmann’s model is based on the experimental values of the Gibbs energy of transferring of a non-polar 
solute from water into an organic liquid, Figure 1. 

∆𝐺 𝑠
∗  𝑤𝑎𝑡𝑒𝑟 → 𝑜𝑟𝑔𝑎𝑛𝑖𝑐  𝑙𝑖𝑞𝑢𝑖𝑑  = ∆𝐺 𝑠

∗  𝑖𝑛  𝑎𝑛  𝑜𝑟𝑔𝑎𝑛𝑖𝑐  𝑙𝑖𝑞𝑢𝑖𝑑  − ∆𝐺 𝑠
∗  𝑖𝑛  𝑤𝑎𝑡𝑒𝑟   (5.1) 

where on the rhs of (5.1) we  have the solvation Gibbs energies of the solute s in an organic solvent and in water. 

     If the experimental values of ∆𝐺 𝑠
∗  𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟   where applicable to proteins, then we would have obtained a large 

“driving force” for the protein folding process. Unfortunately, it was found that Kauzmann’s model is inapplicable to  𝐻𝜙𝑂  
groups attached to the protein backbone. Briefly, instead of ∆𝐺 𝑠

∗  𝑤𝑎𝑡𝑒𝑟   one must use the conditional solvation Gibbs 
energy of a  𝐻𝜙𝑂  group. Second, one does not need the solvation Gibbs energy of the  𝐻𝜙𝑂  group in an organic liquid. A 
more complete argument is given in references 11 and 12. 

     Yet, in spite of these findings the belief that the  𝐻𝜙𝑂  effect dominates the “driving force” for protein folding still lingers. 
This is unfortunate because at the same time when it was shown that the  𝐻𝜙𝑂   effect cannot contribute significantly to 
the driving force for protein folding, it was also shown that a host of  𝐻𝜙𝑂  effects are much stronger than the 
corresponding  𝐻𝜙𝑂  effects. 

     Recognizing the dominance of the  𝐻𝜙𝐼  effect has a profound impact on our ability to understanding two fundamental 
processes; the protein folding and protein-protein association.  

There are essentially three problems that comprise the so-called Protein Folding Problem. 

1. The relationship between a sequence and the native structure of the protein. 
2. The factors that contribute to speed and guide the folding of proteins. 
3. The factors that contribute to the stabilization of the native structure of proteins. 

     Problem 1 does not have a general solution, i.e. there exists no “code” that translates from a sequence of amino acids 
to a 3D structure. The second problem has a general answer. The most likely factors that speed and guide the folding 
process are the  𝐻𝜙𝐼  forces.

12
 Problem 3 also has a general answer. It was shown that both intramolecular HBs, as well 

as various  𝐻𝜙𝐼  interactions are likely to be the main contributors to the stability of the native structure of the protein.
12 

     The conjecture that there might be a “code,” was probably inspired by Anfinsen’s conclusion that the information for the 
native structure is contained in the sequence of the amino acids. However, Anfinsen was careful enough to add that this 
conclusion is valid for a specific environment, namely the temperature, pressure and solvent composition. Different 
environments might dictate different structures for the same sequence. Therefore, there can be no “code” that translates 
from a sequence to a structure. Equivalently, one can say that the information contained in the system, i.e. the sequence 
plus the environment, determines a unique structure, if such a structure exists. Clearly, in this formulation there will be 
infinite “codes” that translate from a specific “sequence plus the environment” into a 3D structure. 

     Although problem 1 has no general solution, the 𝐻𝜙𝐼  effect can contribute to the understanding of the reasons for this. 
Furthermore, inclusion of  𝐻𝜙𝐼  effects can help in the simulation of folding processes of specific sequences of amino 
acids.

12 

     In this article I have endeavored to construct a “minimal” model to demonstrate the origin of the  𝐻𝜙𝐼  effect. In this 
model we have eliminated all features of water which are not relevant to the process of  𝐻𝜙𝐼  interactions. The most 
serious simplification of the model is the neglect of solvent-solvent interactions. As we have argued in sections 3 and 4, 
this assumption renders the solvability of the model, yet it does not affect the origin of the strong  𝐻𝜙𝐼  effect. 

     It should be stressed however that this model is not appropriate for the study of the entropy and enthalpy changes 
associated with the processes studies in this article. The reason is that both the entropy and the enthalpy of the  𝐻𝜙𝐼  
interactions strongly depends on structural changes induced in the solvent, which is another way of expressing the effect 
of the  𝐻𝜙𝐼  process on the average solvent-solvent interaction.

11,12
 These changes in the solvent-solvent interaction will 

not affect the value of the solvation Gibbs energy, nor that of the HΦI interactions.
12,17 

     Another important aspect of the solute-induced interaction which we have demonstrated in this model is the non-
additivity of the  𝐻𝜙𝐼  interaction. The sources of the non-additivity of the solvation Gibbs energy of any solute has been 
discussed in references 12 and 16. 

     Here, it is appropriate to point out that many models of protein folding use the assumption of pairwise additivity for the  
𝐻𝜙𝑂  interactions. However, since the pairwise additivity assumption cannot be used even as an approximation, it follows 
that any theory based on this assumption is invalidated. A further reason for the invalidation of the theory is the inclusion 
of  𝐻𝜙𝑂  effect, but excluding the more important  𝐻𝜙𝐼  effects. On the other hand, the  𝐻𝜙𝐼  forces and interactions 
provide simple and intuitive answers to the problems of protein folding and protein-protein association.

18,19,20 
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