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ABSTRACT 

Let G=(V,E) be a molecular graph, where V(G) is a non-empty set of vertices and E(G) is a set of edges. The Omega 

polynomial Ω(G,x) was introduced by Diudea in 2006 and this defined as , , xc
c

G x m G c  where m(G,c) the 

number of qoc strips of length c. In this paper, we compute the omega polynomial of an infinite family of the linear 
parallelogram P(n,n) of benzenoid graph. 
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INTRODUCTION  

Let G=(V,E) be a simple connected molecular graph in chemical graph theory., where the vertex set and edge set of G 
denoted by V(G) and E(G) respectively and its vertices correspond to the atoms and the edges correspond to the bonds 

[1-3].  

In graph theory, a topological index of a molecular graph G is a numeric quantity related to G. The oldest nontrivial 
topological index is the Wiener index which was introduced by Chemist Harold Wiener [3]. The Wiener index [3] is defined 
as 

( ) ( )

1
( ) ( , )

2 u V G v V G

W G d u v  

where the distance d(u,v) between two vertices u and v is the number of edges in a shortest path connecting them. 

There exits many topological indices in mathematical chemistry and several applications of them have been found in 
physical, chemical and pharmaceutical models and other properties of molecules. Mathematical chemistry is a branch of 
theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without 
necessarily referring to quantum mechanics. Chemical graph theory is a branch of mathematical chemistry which applies 
graph [1-3].  

Let G(V, E), be a molecular graph, with the vertex set V(G), and edge set E(G), and x, y V(G). Two edges e=uv and f=xy 
of G are called co-distant (briefly: e co f) if they obey the topologically parallel edges relation. For some edges of a 
connected graph G there are the following relations satisfied [4-7] 

ecoe  

e co f f co e  

hcoehcoffcoe &  

though the last relation is not always valid. 

Set C(e):={f E(G), | e co f}. If the relation “co” is transitive on C(e) then C(e) is called an orthogonal cut “oc” of the graph 
G. The graph G is called co-graph if and only if the edge set E(G) is the union of disjoint orthogonal cuts. 

1 2 1... k kE G C C C C  and ,i jC C  

for i≠j and i, j=1, 2, …, k. 

The Omega polynomial Ω(G,x) for counting qoc strips in G was defined by M.V. Diudea in 2006 as 

, , x
c

cG x m G c  

where m(G,c) being the number of qoc strips of length c and the summation runs up to the maximum length of qoc strips 
in G. Also, first derivative of omega polynomial (in x=1), equals the number of edges in the graph G. For more study, see 
papers [8-16]: 

G,1 m G, ( )
c

c c E G  

In this paper, we compute the omega polynomial of an infinite family of benzenoid system and called the linear 
parallelogram P(n,n). Reader can see general representation of this family in Figure1. 

Herein, our notation is standard and taken from the standard book of graph theory [1-3] and for more study about Omega 
polynomial and other counting polynomilas see paper serices [4-20]. 

Main Results and Discussions 

In this section is to compute the Omega polynomial for an infinite family of the linear parallelogram P(n,m) of benzenoid 
graph. In generally consider the linear parallelogram benzenoid graph P(n,m) depicted in Figure 1 and see [21-23]. This 
graph has 2mn+2m+2n vertices, since |V(P(n,m))|=(2n+2)(m+1)-2 and |E(P(n,m))|=(3n+2)(m)+2n-1=3mn+2n+2m-1 

, .n m   It is easy to see that P(n,n) has exactly 2n(n+2) vertices and 3n
2
+4n-1 edges.  

Theorem 1. The Omega polynomial of the linear parallelogram P(n,m) , ,n m   is as follows: 
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+mx
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+ nx
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Fig 1. A general representation of the linear parallelogram P(n,m) , .n m   

 

Proof. Let G be the linear parallelogram P(n,m), with 2mn+2m+2n vertices and 3mn+2n+2m-1 edges. By using the 
following tables and figure of P(n,m), the proof is easy. So, for all integer numbers n≥m and from Table 1 we have 

,n m   , x , , x, c

c
P n m m P n m c  

=mx
2n+1 

+ nx
2m+1 

1
1

1

2x
m

i

i

 + (n-m+1)x
m+1 

=2x
2
 + 2x

3
+...+2x

m
 +(n-m+1)x

m+1 +
 mx

2n+1 
+ nx

2m+1 

 

Table 1. The number of co-distant edges of the linear parallelogram P(n,m). 

quasi-orthogonal cuts Number of co-distant edges No 

1C  m 2n+1 

2C  n 2m+1 

Ci i=1,…,Min{n,m}-1 2 i+1 

CMin{n,m} |n-m|+1 Min{n,m}+1 

 

On other hands, from Table 1, :n m   

, x,P n m =mx
2n+1 

+ nx
2m+1 
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 + (m-n+1)x
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=2x
2
 + 2x

3
+...+2x

n
 +(m-n+1)x

n+1 +
 mx

2n+1 
+ nx

2m+1 

and this completes the proof.■ 

Lemma 1. The Omega polynomial of the linear parallelogram P(n,n), ,n   is equal to  

, x,P n n =2x
2
 + 2x

3
+...+2x

n
 +x

n+1 +
 2nx

2n+1 
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