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ABSTRACT 

Natural clay from Nabeul region (north of Tunisia) was investigated for the removal of two anionic textile dyes (RR120 and 
BB150) from aqueous solution. The raw clay was characterized by means of XRD, IR spectroscopic, chemical analysis, 
cation exchange capacity and BET surface area analysis. 

Adsorption studies were carried out under various parameters such as pH, contact time, initial dye concentration and 
temperature. The adsorption kinetic data was tested by pseudo-first order, pseudo second-order and intra-particle 
diffusion kinetic models. The equilibrium data were analyzed using Langmuir, Freundlich, Temkin and Dubinin–

Radushkevich isotherm models. The thermodynamic parameters (H°, S° and G°) of the adsorption were also 
evaluated. The adsorption process was found spontaneous and endothermic in nature. The kinetics of adsorption were 
best described by pseudo-second order kinetic model. The Langmuir adsorption model totally agrees with the 
experimental data.  
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1. INTRODUCTION  

Water contamination by pollutants from various sources is a current problem. Especially in the textile industry, wastewater 
is one of the largest sources of surface water and groundwater pollution. Because of the high stability and the low 
biodegradability of textile dyes they cause serious environmental problems. Among 7.10

5
 t and approximately 10,000 

different types of dyes and pigments produced worldwide annually, it is estimated that 1–15% of the dyes are lost in the 
effluents during the dyeing process [1]. Thus it is imperative to treat the wastewater from the textile industries before they 
are discharged into the sewer system. 

The treatment of water contaminated by textile dyes was the subject of several studies to reduce the color intensity and 
the amount of organic matter. Several decontamination methods have been developed, we cite as examples: adsorption 
[2,3], ion exchange [4,5], flocculation-coagulation [6]…etc. 

Many adsorbents have been tested to reduce dye concentrations from aqueous solutions such as activated carbon [7], 
adsorbents including agricultural wastes [8,9], lignite [10], natural phosphate [11], chitosan [12], silica [13], kaolinite [14], 
hydroxyapatite [15,16], perlite [17], sepiolite [18], montmorillonite [19] and some natural biosorbents have also been 
reported [20,21].  

However, the use of natural materials is a promising alternative due to their relative abundance and low commercial value. 

The present work concerns the study of the potentiality of Tunisian natural clay as a low cost adsorbent for the removal of 
two organic textile dyes from aqueous solution as an ideal alternative to the current expensive methods of removing dyes 
from wastewater. 

Adsorption studies were carried out under various parameters such as pH, contact time, initial dye concentration and 
adsorption temperature. The adsorption kinetic data was tested by pseudo-first-order, pseudo-second-order and intra-
particle diffusion kinetic models. The equilibrium data were analyzed using Langmuir, Freundlich, Temkin and Dubinin–
Radushkevich isotherm models. The thermodynamics of the adsorption was also evaluated. 

2. EXPERIMENTAL  

2.1. Materials and techniques 

The raw clay used in this work was collected from Nabeul region in Tunisia. In order to determine the mineralogical 
composition of the clay fraction XRD and IR techniques were applied to the purified clay fraction. The raw clay was 
purified by repeating cation exchange with NaCl solution (1N) followed by washing, sedimentation and dialysis [22]. The 
fine clean sediment was dried at 50°C then sieved in particles size lower than 63µm. The selected sample was indicated 
by NC. “p” was added to indicate the purified fraction. 

Two anionic textile dyes were used in this study. The first is called Reactive Red 120 (RR120) and the second is called 
Reactive Blue Bezaktiv S-GLD 150 (BB150). They were provided by textile industry in the region of Nabeul. The chemical 
formula and some other specific characteristics of these dyes are summarized in Table 1. 

X-ray diffraction (XRD) patterns of the samples were obtained using a bruker X-ray diffraction unit model with radiation Cu-Kα 
(1.541874 Å) at room temperature in 40kV and 20mA at a scan speed of 1.2°.min

-1
. Specific surface area was determined 

from N2 adsorption isotherm at -196°C in a Micromeritics ASAP2010 sorptometer. Samples were out gassed prior to use at 
200°C a night under vacuum. The infrared absorption spectra of a KBr pressed pellet of the powdered sample was studied in 
the range 4000–400 cm

-1
 using a Bruker spectrophotometer. The cation exchange capacity (CEC) was determined by the 

ethylene diamine-copper method. 
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Table1. Physicochemical characteristics of used dyes. 

Name  Molecular structure  Nature  MW (g.mol
-1

)  λmax (nm)  

Reactive Red 
120 

 Anionic 1338.04 535 

Reactive Blue 
Bezaktiv 

 S-GLD 150 

 Anionic 960 620 

 

2.2. Adsorption tests 

Stock solutions of 0.8 g.L‏
-1

of RR120 and BB150 dyes were prepared by dissolving appropriate amount of each dye in 
distilled water and the used concentrations were obtained by dilution. Adsorption experiments were conducted at a 
constant agitation speed of 450 rpm by varying the pH of solution from 3 to 9, the adsorbent dosage from 0.3 to 6 g.L

-1
, 

the contact time from 10 to 130 min, the initial dyes concentrations from 20 to 150 mg.L
-1

 and the temperature from 20 to 
50°C. The pH was adjusted to a given value by addition of HCl (1 N) or NaOH (1 N) and was measured using a CRISON 
CLP21 pH-Meter. The temperature was controlled using a thermostatically controlled incubator. 

After each adsorption experiment completed, solid and liquid phases were separated by centrifugation at 4000 rpm for 15 
min. The supernatants were analyzed for residual dye concentrations by a Perkin Elmer LAMBDA 24 spectrophotometer. 

The adsorbed quantity was calculated using the following equations: 

                                                                                                                                               (1) 

where q (mg.g
-1

) is dye adsorbed quantity per unit mass of adsorbent, C0 (mg.L
-1

) is the initial dye concentration, C (mg.L
-

1
) is the residual dye concentration, m (g) is the mass of used adsorbent and V (L) is the volume of the aqueous solution. 

2.3. Equilibrium isotherm modeling 

The equilibrium data were fitted using Langmuir [23,24], Freundlich [25-26], Temkin [27-29] and Dubinin–Radushkevich 
isotherm models [30-33].  

2.3.1. Langmuir model 

Langmuir isotherm assumes monolayer adsorption onto a surface containing a finite number of adsorption sites. The 
model assumes uniform energies of adsorption onto the surface and no transmigration of adsorbate in the plane of the 
surface. Based upon these assumptions, Langmuir represented the following equation: 

                                                                                                                                                          (2) 

Langmuir adsorption parameters were determined by transforming equation (2) into its linear form:  

                                                                                                                                                (3) 
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Where Ce is the dye concentration at equilibrium (mg.L
-1

), qe is the dye adsorbed amount at equilibrium (mg/g), Qo is the 
maximum monolayer coverage capacity (mg.g

-1
) and KL is the Langmuir equilibrium constant (L.mg

-1
). 

2.3.2. Freundlich model 

Freundlich adsorption isotherm is commonly used to describe the adsorption characteristics for the heterogeneous 
surface. Its equation is also applicable to multilayer adsorption and is expressed by equation (4): 

                                                                                                                                                             (4) 

Where Kf is the Freundlich constant (mg
1-1/n

.L
1/n

.g
-1

) and n is the adsorption intensity.  

Freundlich adsorption parameters were determined using logarithmic form of equation (4):  

                                                                              (5) 

2.3.3. Temkin model 

Derivation of temkin isotherm supposes that the decrease of adsorption heat is linear rather than logarithmic and that the 
adsorption is characterized by a uniform distribution of the bond energies up to a certain maximum binding energy. The 
model is given by the following equation: 

                                                  (6) 

Where bT is Temkin isotherm constant, R is the universal gas constant (8.314 J.mol
-1

.K
-1

) and T is the absolute 
temperature (K). Temkin adsorption parameter, bT (J.mol

-1
.g.mg

-1
), was determined from the slope and intercept of qe vs 

LnCe plot. 

2.3.4. Dubinin-Radushkevich model 

Dubinin–Radushkevich isotherm is generally applied to express the adsorption mechanism with a Gaussian energy 
distribution onto a heterogeneous surface. The model has often successfully fitted high solute activities and intermediate 
range of concentrations data well. The model is given by the following equation: 

)                                                                                                          (7) 

Where, BD is a constant related to adsorption energy and qD is the theoretical isotherm saturation capacity (mg/g). The 
linear form of equation (7) is: 

                                                                                                         (8) 

Dubinin–Radushkevich adsorption parameters were determined from the slope and intercept of Lnqe vs [RT Ln(1+1/Ce)]
2
  

plot. 

The apparent adsorption energy (ED) can be computed using equation (9): 

                                                                                                                                                     (9) 

2.4. Adsorption kinetic 

Kinetic study of the adsorption process provides information on the mechanism adsorption and the transfer mode of the 
solutes from the liquid phase to the solid phase. 

The procedure of the kinetic adsorption study was identical to the adsorption equilibrium study where the aqueous 
samples were withdrawn at different time intervals and the concentrations of dyes were similarly measured. The dye 
adsorbed amount, qt (mg.g

-1
), at time t was calculated by: 

                                                                                                                                                 (10) 

where Ct (mg.L
-1

) is the dye concentrations of the liquid phase at time t.  

The kinetics data were fitted using pseudo-first-order, pseudo-second-order and intra particle diffusion models. 

2.4.1. Pseudo-first order model 

It has been assumed that in this model constant adsorption rate k1 (min
-1

) at time t is proportional to the difference 
between the adsorbed amount at equilibrium, qe, and the adsorbed amount at this moment, qt, and that the adsorption is 
reversible [34]. Constant adsorption rate is deducted from the model established by Lagergren and coll. [35]. 

 

 



    ISSN 2321-807X 

3689 | P a g e                                                            M a y  1 8 ,  2 0 1 5  

The kinetic law equation is: 

                                                                                                                                (11) 

2.4.2. Pseudo-second order model 

The equation of the pseudo-second order is often used with success to describe the kinetics of the binding reaction of the 
pollutants on the adsorbent [36]. This model allows the characterization of the kinetics of adsorption taking into account 
both the case of a fast fixation of solutes on the most reactive sites and that of a slow fixation on sites with low energy. 

The kinetic law equation is: 

                                                                                                                                                             (12) 

where k2 (g.mg
-1

.min
-1

) is the constant adsorption rate of pseudo second-order equation. 

 

2.4.3. Intra particle diffusion model 

Intra particle diffusion model was proposed by Weber and Morris [37]. The molecule is assumed to migrate by diffusion 
into the liquid and enter the pores of the solid phase. 

The possibility of intra- particle diffusion was explored by using the following equation [38]: 

                                                                                                                                               (13) 

where kid is the intra-particle diffusion constant rate (mg.g
-1

.min
-1/2

) and I (mg.g
-1

) is a constant which gives information 
about the thickness of boundary layer. 

3. RESULTS AND DISCUSSION 

3.1. Characterization of the clay sample 

The identification of the clay mineral has been based on previous studies [38-41]. According to the diffractogram of the 
raw clay fraction (Fig.1a) the quartz (reflections at 4.26Å and 3.34Å) and the calcite (reflections at 3.02Å and 2.86Å) are 
the essential impurities in this clay. After purification these reflections disappear (Fig.1b). 

The X-ray patterns of the purified clay fraction (Fig.2-a-b-c) show reflections at 7.17Å and 3.58Å which disappears after 
heating at 550°C and persist after treatment with ethylene glycol. These reflections confirm the presence of the kaolinte 
phase. The peaks at 9.98Å, 4.99Å and 3.33Å are detected in all the samples; they are due to the presence of illite phase.  

The infrared spectrum of NCp (Fig.3b) shows: 

- bands at 697 cm
-1

 and 921 cm
-1

 indicating the presence of kaolinite. They are attributed to Al-Al-OH bending 
vibration. 

- bands at 3430 cm
-1

 and 1630 cm
-1

 corresponding, respectively, to the stretching and bending vibration of water 
used in hydration of clay. 

- bands in 3720-3645 cm
-1

 region corresponding to the stretching vibration of hydroxyl groups. 

- band with high intensity centered at 1028 cm
-1

 characteristic of the SiO2 stretching vibration of the clay. Bending 
vibrations appear at 546 cm

-1
 for Si-O-Al and at 471 cm

-1
 for Si-O-Si. 

The NC infrared spectrum (Fig.3a) contains additional bands at 800 cm
-1

 reveling the presence of quartz and at 1462 cm
-1

 
corresponding to the carbonate. These bands disappear after purification (Fig.3b). 

The chemical composition of the raw clay is indicated on table 2. The presence of potassium (1.161%) confirms the 
presence of illite in the clay fraction. 

The cationic exchange capacity of the raw clay is found to be equal to 74.85 meq per 100g of fired clay. The BET specific 
surface of the raw clay is equal to 23.26 m

2
.g

-1
 and the average pore diameter is of 130.105Å. 
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         Figure 1: powder XRD patterns of NC (a) and NCp (b)        Figure 2: XRD patterns of NCp (a) dried in air (b) treated             

                   with ethylene glycol and (c) calcined at 500°C 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: IR spectra of NC (a) and NCp (b) 

 

Table 2: chemical analysis of NC and NCp 

Oxide % in weight 

SiO2 37.50 

Al2O3 17.21 

Fe2O3 3.343 

CaO 12.83 

MgO 6.183 

SO3 0.875 

K2O 1.161 

P2O5 0.1169 

Na2O 0.157 

Loss on ignition 19.85 

total 98.96 
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3.2. Effect of pH on the adsorption dyes 

Adsorption process depends strongly on pH of the liquid phase [42]. This parameter can affect at the same time the 
surface charge of the adsorbent, the ionization degree of the materials present in the solution, the dissociation of 
functional groups on the active sites of the sorbent and also the solution dye chemistry [43]. Here, we investigated the 
effect of four initial solution pH (i.e., 3, 5, 7 and 9) on the removal rate of mentioned dyes. In this range the utilized dyes do 
not altered [44]. 

In Fig.4 are shown the changes observed in the adsorption of RR120 and BB150 by raw clay. It is clear that the adsorption 
of the anionic dyes is highly dependent on pH. The maximum of adsorption, for the two dyes, was obtained at pH = 3. 
When pH increases, upto pH = 7, the capacity of adsorption decreases drastically which can be explained by the increase 
of the repulsive forces between surface functional groups of both, the clay (hydroxyle groups OH

-
) phase and dyes 

molecules existing mainly as anion form. 

At basic pH, despite the presence of OH
-
 ions, we find that the adsorption capacity is higher compared to neutral pH, so 

we can say that there is always an attraction between the dyes and the clay. The repulsion between the OH
-
 ions and 

dyes anions decreases. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Effect of pH on the adsorption of RR120 and BB150 dyes by NC  

3.3. Effect of initial dye concentration 

Here, experiments were carried out at different initial concentrations of dyes from 20 to 150 mg.L
-1

 and at natural pH 
conditions. Corresponding curves are shown in Fig.5. According to the classification of Sposito [45] adsorption isotherms 
are of L-type which is characterized by a slope increasing with the concentration of the substance in solution. This is the 
result of a relatively high affinity for the solid phase to the adsorbed substance, coupled with a decrease in the number of 
adsorption sites. The amounts of dyes removed by the raw clay are 11.76 mg g

-1 
for RR120 and 14.76 mg.g

-1
 for BB150. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5: Effect of initial RR120 and BB150 concentration on their adsorption by NC 
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3.4. Effect of contact time 

Here, adsorption experiments were conducted at different contact times varying from 10 to 130 min and at natural pH. The 
initial concentration of dyes was fixed at 80mg.L

-1
. Corresponding curves are shown in Fig.6. The adsorption capacity of 

dyes increases rapidly and linearly with time contact up to 30 min. Between 30 min and 50 min adsorption rate decreases. 
From 50min of time contact, the adsorption capacity reaches the maximum (8.64 mg.g

-1
 for RR120 dye and 14 mg.g

-1
 for 

BB150 dye) and becomes independent of contact time.  

The rapid adsorption during the first 30 min can be explained by the abundant availability of active sites on the clay 
surface, but, with the gradual occupancy of these sites, the adsorption became less efficient.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Effect of contact time on adsorption of RR120 and BB150 by NC 

3.5. Adsorption isotherms 

Fig.7 shows Langmuir, Freundlich, Temkin and Dubinin – Radushkevich isotherms for both dyes. The characteristic 
parameters of the different models as well as the correlation coefficients R

2
 are listed in Table 3. The values of the 

regression coefficients indicate that the adsorption process, for both dyes, is described in a favorable manner by the 
Langmuir isotherm model. 

Table 3. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm constants for the adsorption of RR120 and 

BB150 by NC. 

dyes 

 

Langmuir parameters Freundlich parameters 

KL Q0 R
2
 1/n KF R

2
 

RR120 0.036 15.62 0.983 0.380 2.05 0.855 

BB150 0.032 20.40 0.973 0.386 2.50 0.825 

 Temkin parameters Dubinin – Radushkevich parameters 

KT bT R
2 

qD BD ED R
2
 

RR120 0.555 858.18 0.919 10.92 2.10
-5

 0.158 0.911 

BB150 0.567 686.87 0.898 13.84 2.10
-5

 0.158 0.938 
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Figure 7: Langmuir (a), Freundlich (b), Temkin (c) and Dubinin–Radushkevich (d) adsorption isotherms 

3.6. Effect of temperature and thermodynamic study 

Adsorption is a phenomenon that may be exothermic or endothermic depending on the adsorbent material and the nature 
of the adsorbed molecules [46]. In order to understand the thermodynamic phenomenon of adsorption of both studied 
dyes by the raw clay, we performed adsorption experiments by varying the temperature of the colored solutions from 20 to 
50°C. 

The variation of quantities of RR120 and BB150 adsorbed on the clay as function of solution temperature are shown in 
Fig.8. The adsorbed quantity of both dyes decreases significantly with the increase in temperature from 20°C to 50°C.  

From lnKc vs. 1/T curves (Fig.9), thermodynamic parameters including the change in free energy (ΔG°), enthalpy (ΔH°) 
and entropy (ΔS°) were calculated and used to describe thermodynamic behavior of the adsorption of RR120 and BB150 
onto the raw clay. These parameters were calculated [47] by considering the following equations: 

                                                                                                            (14) 

                         (15) 

                         (16) 

Where KC is equilibrium constant, and T is solution temperature in Kelvin.  

 

 

 

 

 

 

 

 

 

              Figure 8: Effect of temperature on the adsorption             Figure 9: Thermodynamic parameters of the adsorption 

                        equilibrium of RR120 and BB150 by NC                                         of RR120 and BB150 by NC 
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The calculated thermodynamic parameters are illustrated in Table 4. From these results, it can be concluded that, the 
adsorption process is endothermic in nature for both dyes BB150 and RR120.  The low values of adsorption enthalpies of 
RR120 (6.245 kJ.mol

-1
) and BB150 (4.211 kJ.mol

-1
) indicate that adsorption is a physical type. Positive values of entropy 

show that the adsorption of both dyes on the raw clay was accompanied by an increase of disorder. This result shows that 
the dye molecules adsorbed on the raw clay surface are organized much random as compared with the situation in the 
aqueous phase. 

Similarly, the negative values of ΔG° show that the process of adsorption of both dyes on the raw clay is a spontaneous 
process. 

Table 4 Thermodynamic parameters calculated for the adsorption of dyes by NC 

T(°C) RR120 BB150 

ΔH° 

(kJ.mol
-1

) 

ΔS° 

(J.K
-1

mol
-1

) 

ΔG° 

(J.mol
-1

) 

ΔH° 

(kJ.mol
-1

) 

ΔS° 

(J.K
-1

mol
-1

) 

ΔG° 

(J.mol
-1

) 

20 

6.245 24.80 

-1021.4 

4.211 14.39 

-5.27 

30 -1269.4 -149.17 

40 -1517.4 -293.07 

50 -1765.4 -436.97 

3.7. Adsorption kinetics 

The experimental kinetic data of both dyes, calculated from Eq. (10), were correlated by three kinetic models: pseudo-first 
order, pseudo-second order and intra-particle diffusion (Fig.10). The calculated kinetic constants of the three kinetic 
models along with R

2
 values are presented in Table 5. From this table we can note that the pseudo-second order kinetic 

model fits better the experimental results of adsorption of RR120 dye with a constant rate k2 = 0.004 g.mg
-1

.min
-1

. 
Whereas adsorption of BB150 dye is best described by pseudo-first order kinetic model with a constant rate k1 = 0.057 
g.mg

-1
.min

-1
. 

 

 

 

 

 

 

 

 

                                          (a)                                                                                      (b) 

 

 

 

 

 

 

 

 

(c) 

Figure 10: Pseudo- First order (a), pseudo-second order (b) and Intra particle diffusion  

(c) kinetic models plots for the adsorption of BB150 and RR120 on NC 
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Table 5: Kinetic parameters for BB150 and RR120 dyes adsorption by NC 

dyes qe. exp 
Pseudo First-order kinetic model Pseudo second-order kinetic model 

k1 qe calc R
2
 k2 qe calc R

2
 

RR120 8.64 0.081 10.07 0.842 0.0040 10.86 0.946 

BB150 14 0.057 16.49 0.989 0.0029 16.94 0.975 

 

dyes qe.exp 
Intra-particule diffusion model 

kid I R
2
 

RR120 8.64 1.339 1.702 0.855 

BB150 14 0.854 0.911 0.823 
 

4. CONCLUSIONS 

This work concerns the study of the potentiality of natural clay, collected near a textile industry, to remove two used texti le 
dyes RR120 and BB150. The studied Tunisian raw clay can efficiently remove dyes from aqueous solutions. The 
adsorption was dependent on the pH of the aqueous solution, with high uptake of anionic dye at low pH. The adsorption 
isotherm could be well fitted by Langmuir equation in the case of both anionic dyes. The rise in temperature decreases the 
adsorbed amount of RR120 and BB150 on clay. The adsorption process is found spontaneous, endothermic and 
characterized by a disorder of the medium. These results suggest that the adsorption of anionic dyes by the raw clay could 
be physisorption. Finally, the use of Tunisian natural clay shows a greater potential for the removal of textile dyes, as no 
costly equipment is required.  
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