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ABSTRACT 

In this paper, the problem of robust delay-dependent stability criterion is considered for a class of linear continuous time 
heat exchanger system with constant additive state-delays and bounded nonlinear perturbations using Lyapunov-
Krasovskii (LK) functional approach.  In the proposed delay-dependent stability analysis, the time-delays are considered to 
be time-invariant.  In the proposed delay-dependent stability analysis, a candidate LK functional is considered, and take 
the time-derivative of the functional is bounded using the Jenson integral inequality.  The proposed stability analysis finally 
culminates into a stability criterion in LMI framework.  The effectiveness of the proposed stability criterion is illustrated 
using a network controlled temperature control of heat exchanger system 
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INTRODUCTION 

Retarded time-delay differential equations with two additive state-delays provide ideal mathematical explanation for 
Networked Control Systems (NCSs) [1].  In real time conditions, the two time-delays in a typical NCS arise due to the 
transfer of state information from the plant to the controller and the succeeding transfer of controlled effort from the 
controller to the actuator to operate the plant [2, 3].  Since these two time-delays, owing to the network conditions, have 
unalike characteristic, analysis and synthesis of this class of time-delay systems pose interesting challenges and problems 
to the control engineering community [3].  Delay-dependent stability analysis of temperature control of heat exchanger 
system, based on Lyapunov-Krasovskii (LK) functional approach, yields sufficient conditions for computing the maximum 
allowable bound of the time-delays within which the temperature control of heat exchanger system under consideration 
remains asymptotically stable in the sense of Lyapunov. These sufficient conditions, referred generally as delay-
dependent stability criteria, are expressed as a set of solvable LMI conditions.  The conservatism of delay-dependent 
stability criteria depends mainly on the choice of the LK functional used in the analysis, and the techniques, many useful 
results have been reported in literature in recent time [2-13].  Among these results, expect [14], all the other result present 
stability criteria for nominal systems with additive state-delays; in [14], a robust stability criterion is derived for additive 
state-delayed systems with time-varying parametric uncertainties. 

In spite of many useful results existing in literature, there are no results available for ascertaining delay-dependent stability 
of linear (heat exchanger) system with additive state-delays subjected to bounded nonlinear perturbations.  These 
nonlinear perturbations, expressed with respect to current and delayed states, account for system uncertainties like noisy 
ambient conditions, slowly varying system parameters etc., refer [14, 15, 20].  The robustness of nonlinear perturbed heat 
exchanger system can be ascertained by delay-dependent stability analysis based on Lyapunov approach [19].  Proposing 
one such analysis is the objective of this paper. In the proposed analysis, with the assumption that the network delays are 
constant, a fewer conservative delay-dependent stability criterion is derived using LK functional approach and Jenson 
integral inequality [16] in LMI formulation.  By making use of this integral inequality, there is a substantial reduction in 
number of free-weighting matrices employed in the delay-dependent stability analysis.  Since the proposed robust stability 
criterion is expressed in LMI framework, it can be solved efficiently in temperature control of heat exchanger system. 

System Description and Problem Statement 

In general the state-space model of the uncertain additive state-delayed temperature control of heat exchanger (PI control) 
system with nonlinear perturbations is given below: 

𝑥  𝑡 = 𝐴𝑥 𝑡 + 𝐴𝑑𝑥 𝑡 − 𝑕1 − 𝑕2 + 𝑓 + 𝑔, 

    𝑥 𝑡 = ∅ 𝑡 , 𝑡 ∈  − 𝑕 1 + 𝑕 2 , 0 ,                                                                            (1) 
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where 𝑥(𝑡) ∈ ℝ𝑛×1 is the state vector, 𝐴 ∈ ℝ𝑛×𝑛  and 𝐴𝑑 ∈ ℝ𝑛×𝑛  are represents the system matrices are associated with 
the current state and delayed state vectors, ∅ 𝑡  is the vector-valued continuous-time function describing the initial 

condition of the system, for the temperature control system state vector, and system matrices are reduced the following: 

 

 

 

 

 

The additive state-delays 𝑕1 and 𝑕2 satisfy the following conditions: 

            0 ≤ 𝑕1 ≤ 𝑕 1,   0 ≤ 𝑕2 ≤ 𝑕 2                                                                    (2) 

where 𝑕 1 and 𝑕 2 are the upper bound of the time-delays 𝑕1and 𝑕2. In (1), the terms 𝑓 = 𝑓 𝑥 𝑡 , 𝑡  and 𝑔 = 𝑔 𝑥 𝑡 − 𝑕1 −
𝑕2,𝑡 represents the nonlinear perturbations with respect to current state and additive delayed state; they are assumed to 

satisfy 𝑓 0, 𝑡 = 𝑔 0, 𝑡 = 0 and following bounding conditions: 

              𝑓𝑇𝑓 ≤ 𝛼2𝑥𝑇 𝑡 𝐹𝑇𝐹𝑥 𝑡 ,                                                                    (3) 

  𝑔𝑇𝑔 ≤ 𝛽2𝑥𝑇 𝑡 − 𝑕1 − 𝑕2 𝐺
𝑇𝐺𝑥 𝑡 − 𝑕1 − 𝑕2 ,                                                    (4) 

where 𝐹 and 𝐺 are known constant matrices of appropriate dimensions; the non-negative scalars 𝛼 and 𝛽 quantify the 

magnitude of the nonlinear perturbations.  The problem addressed in this paper is stated below: 

To develop a robust stability criterion in LMI framework to ascertain delay-dependent stability of the system (1) subject to 
bounding conditions (3) and (4), and satisfying the additive time-delays (2) using Lyapunov-Krasovskii (LK) functional 
approach and Jenson integral inequality lemma.  For deriving the robust stability criterion, following lemmas are 
unavoidable: 

  Lemma 1: For any positive symmetric constant matrix 𝑀 ∈ ℝ𝑛×𝑛 , scalar 𝑟1and 𝑟2 satisfying 𝑟1 < 𝑟2, a vector valued 

function 𝜔: [𝑟1, 𝑟2] → ℝ𝑛  such that the integrations related are well defined, then following inequality holds: 

  𝜔 𝑠 𝑑𝑠
𝑟2

𝑟1

 

𝑇

𝑀  𝜔 𝑠 𝑑𝑠
𝑟2

𝑟1

 ≤ 𝑟12  𝜔𝑇 𝑠 𝑀𝜔 𝑠 𝑑𝑠.
𝑟2

𝑟1

 

where 𝑟12 = 𝑟2 − 𝑟1. 

Lemma 2: For a continuous function 𝑓(𝑥) and its derivative 𝑓 ′(𝑥) defined on  𝑎, 𝑏 , then 

 𝑓 ′ 𝑥 𝑑𝑥 = 𝑓 𝑏 − 𝑓 𝑎 .
𝑏

𝑎

 

Lemma 3:  For any positive symmetric constant matrix 𝑍 ∈ ℝ𝑛×𝑛 , scalars 𝛾1 and 𝛾2 satisfying 𝛾1 ≤ 𝛾2, a vector valued 

function 𝑥 𝑡 − 𝛾 : [ 𝛾1, 𝛾2] → ℝ𝑛  such that the integration concerned as well defined, then following inequality holds: 

−𝛾12  𝑥 𝑇 𝑠 𝑍𝑥 (𝑠)𝑑𝑠
𝑡−𝛾1

𝑡−𝛾2
≤  

𝑥(𝑡 − 𝛾1)
𝑥(𝑡 − 𝛾2)

 
𝑇

 
−𝑍 𝑍
𝑍 −𝑍

  
𝑥(𝑡 − 𝛾1)
𝑥(𝑡 − 𝛾2)

                                        (5) 

Proof: By Lemma 1, we can write the following expression  𝜔 𝑠 = 𝑥  𝑠 ,𝑀 = 𝑍, 𝑟1 = 𝑡 − 𝛾2 , 𝑟2 = 𝑡 − 𝛾1 : 

−𝛾12  𝑥 𝑇 𝑠 𝑍𝑥  𝑠 𝑑𝑠
𝑡−𝛾1

𝑡−𝛾2
≤   𝑥  𝑠 𝑑𝑠

𝑡−𝛾1

𝑡−𝛾2
 
𝑇
 −𝑍   𝑥  𝑠 𝑑𝑠

𝑡−𝛾1

𝑡−𝛾2
                                      (6) 

By Lemma 2, we can express (6) as follows  𝑓 .  = 𝑥 𝑠 , 𝑎 = 𝑡 − 𝛾2 , 𝑏 = 𝑡 − 𝛾1 : 

−𝛾12  𝑥 𝑇 𝑠 𝑍𝑥 (𝑠)𝑑𝑠
𝑡−𝛾1

𝑡−𝛾2
≤  𝑥 𝑡 − 𝛾1 − 𝑥 𝑡 − 𝛾2  

𝑇
 −𝑍  𝑥 𝑡 − 𝛾1 − 𝑥 𝑡 − 𝛾2  ,                         (7) 

which, in other words, is expressed quadratically as stated in (5) of the lemma. 
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Main Result 

The main result of the paper is stated in the form of a Theorem: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Block diagram of closed loop temperature control of heat exchanger system with constant additive-delays 

Theorem: The LTI system (1) is asymptotically stable in the sense of Lyapunov for a given value of 𝑕 1 and 𝑕 2, if there 

exist real symmetric positive definite matrices 𝑃, 𝑄1, 𝑄2, and 𝑅; scalars 𝜀1 > 0 and 𝜀2 > 0 such that the LMI (17). 

 Proof: The Lyapunov-Krasovskii (LK) functional approach are used in the delay-dependent stability analysis of a LTI 

system controlled over a delayed network is given by 

𝑉(𝑥 𝑡 ) = 𝑉1(𝑥 𝑡 ) + 𝑉2(𝑥 𝑡 ) + 𝑉3(𝑥 𝑡 ), 

where 

          𝑉1 𝑥 𝑡  = 𝑥𝑇 𝑡 𝑃𝑥 𝑡                                                                         (8) 

𝑉2 𝑥 𝑡  =  𝑥𝑇 𝑠 𝑄1𝑥 𝑠 𝑑𝑠 +
𝑡

𝑡−𝑕1
 𝑥𝑇 𝑠 𝑄2𝑥 𝑠 𝑑𝑠
𝑡

𝑡−𝑕
,                                                    (9) 

𝑉3 𝑥 𝑡  =   𝑥 𝑇 𝑠 𝑅𝑥  𝑠 𝑑𝑠𝑑𝜃,
𝑡

𝑡+𝜃

0

−𝑕
                                                             (10) 

where 𝑃, 𝑄1, 𝑄2 and 𝑅; are real symmetric positive definite matrices and 𝑕 = 𝑕1 + 𝑕2.  The time derivative of the LK 

functional 𝑉𝑖 𝑥 𝑡  , 𝑖 = 1,2,3 is given by  

𝑉 1 𝑥 𝑡  = 𝑥 𝑇 𝑡 𝑃𝑥 𝑡 + 𝑥𝑇 𝑡 𝑃𝑥  𝑡 , 

𝑉 1 𝑥 𝑡  =  𝐴𝑥 𝑡 + 𝐴𝑑𝑥 𝑡 − 𝑕1 − 𝑕2 + 𝑓 𝑥 𝑡 , 𝑡 + 𝑔 𝑥 𝑡 − 𝑕1 − 𝑕2 , 𝑡  
𝑇
𝑃𝑥 𝑡 + 𝑥𝑇 𝑡 𝑃 𝐴𝑥 𝑡 + 𝐴𝑑𝑥 𝑡 − 𝑕1 − 𝑕2 +

𝑓𝑥𝑡,𝑡+𝑔𝑥𝑡−𝑕1−𝑕2,𝑡,                                                                                                                                         (11) 

𝑉 2 𝑥 𝑡  = 𝑥𝑇 𝑡 𝑄1𝑥 𝑡 − 𝑥𝑇 𝑡 − 𝑕1 𝑄1𝑥 𝑡 − 𝑕1 + 𝑥𝑇 𝑡 𝑄2𝑥 𝑡 − 𝑥𝑇 𝑡 − 𝑕 𝑄2𝑥 𝑡 − 𝑕 ,                   (12) 

𝑉 3 𝑥 𝑡  = 𝑕𝑥 𝑇 𝑡 𝑅𝑥  𝑡 −  𝑥 𝑇 𝑠 𝑅𝑥  𝑠 𝑑𝑠
𝑡

𝑡−𝑕

 

     𝑉 3 𝑥 𝑡  =  𝑕𝑥 𝑇 𝑡 𝑅𝑥  𝑡 −  𝑥 𝑇 𝑠 𝑅𝑥  𝑠 𝑑𝑠
𝑡−𝑕1

𝑡−𝑕
−  𝑥 𝑇 𝑠 𝑅𝑥  𝑠 𝑑𝑠.

𝑡

𝑡−𝑕1
                                (13) 

Now, for any 𝜀1 ≥ 0 and 𝜀2 ≥ 0, it follows from (3) and (4) that 

                      𝜀1 𝛼
2𝑥𝑇 𝑡 𝐹𝑇𝐹𝑥 𝑡 − 𝑓𝑇𝑓 ≥ 0                                                                (14) 

𝜀2 𝛽
2𝑥𝑇 𝑡 − 𝑕1 − 𝑕2 𝐺

𝑇𝐺𝑥 𝑡 − 𝑕1 − 𝑕2 − 𝑔𝑇𝑔 ≥ 0                                         (15) 

Now, by applying Lemma 3 on (13), and by adding the positive quantities (14) and (15) to  𝑉 𝑖(𝑥 𝑡 )
3
𝑖=1 , we express 

𝑉 (𝑥 𝑡 ) as follows: 

                   𝑉  𝑥 𝑡  ≤ 𝜉𝑇 𝑡 𝛱𝜉(𝑡)                                                                         (16) 
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The augmented state vector is: 

 

Now, if 𝛱 < 0, there exists a sufficient small scalar 𝛼 > 0 such that 𝑉  𝑥 𝑡  ≤ −𝛼 𝑥(𝑡) 2 , which, in turn, implies that the 

additive state-delayed system (1) is asymptotically stable in the sense of Lyapunov. By taking Schur complement [17] 
on 𝛱 < 0, we deduce the delay-dependent stability criterion (LMI (17)) stated in the Theorem 1. 

 

 

 

 

 

 

 

 

 

 

 

∗ −Represents the symmetric matrices 

Remark: For nominal system with 𝑓 .  = 𝑔 .  = 0, the delay-dependent stability criterion is presented in following 

corollary:  

Corollary 1: The LTI system (1) with 𝑓 .  = 𝑔 .  = 0 is asymptotically stable in the sense of Lyapunov for a given value of 

𝑕 1 , and 𝑕 2 , if there exists real symmetric positive definite matrices 𝑃,𝑄1, 𝑄2 and 𝑅 such that the LMI (18) stated. 

Temperature Control System 

For the temperature control of heat exchanger system, linear or linearized models are commonly used to analyze the 
system dynamics and to design a controller.  Fig.1 shows the block diagram of a temperature control of heat exchanger 
system with including network-induced time-delays.  Now that each component of the system namely heat exchanger, 
sensor, valve, controller is modelled by a first-order transfer function [18]. They repeated here for convince: 

    GV s =
KV

TV s+1
;  GH s =

KH

TH s+1
; GF s =

KF

TF s+1
;                                                    (19) 

where KV , KH  and KF  are the gains of valve, heat exchanger and sensor respectively, and TV , TH  and TF  are the 

corresponding time constants. 

In the Fig.1 Portrays sensor to controller delay and portrays controller to actuator delay.  The transfer function of the 
controller is given below. 

                       GC s = KP +
KI

s
                                                                       (20) 

where KP  and KI are the proportional and integral controller gains respectively; the proportional term control the rate of 

temperature rise after initial transients.  The integral controller gain adds a pole at origin and increases the system type by 
one and hence reduces the steady-state error.  The coordinated effort of the PI controller gains will structure the response 
of the temperature control of heat exchanger with reduced overshoot and faster settling time. 

Case Study 

In this section, the potency of the proposed stability criterion for temperature control of heat exchanger system with 
constant additive time delays is illustrated. 

Table.1 Parameter values of Temperature Control system 

System Gain Time-constant 

Heat exchanger 𝐾𝐻 = 34 𝑇𝐻 = 30 

Valve 𝐾𝑉 = 1.25 𝑇𝑉 = 3 

Sensor 𝐾𝐹 = 0.08 𝑇𝐹 = 2 
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In this section, the maximum allowable delay margin for constant are validated additive time-delays 𝑕 1 , and 𝑕 2 for stability 

for a pick range of PI controller gains is computed.  The gains and time constants of the temperature control of heat 
exchanger used in the analysis are as follows [18]. For the aforesaid system parameters, with delay free condition, the 
controller capability curve can be easily obtained; it is illustrated in Fig. 2.   

From the Fig. 2, it is clear that for all values of 𝐾𝑃  and 𝐾𝐼 lying below the controller capability curve, the closed-loop system 

is asymptotically stable. From the curve we choose  𝐾𝑃 = 0.5 and 𝐾𝐼 = 0.02𝑠−1 for computation of delay margin. For these 
controller parameters, the closed loop system converges asymptotically to equilibrium point as illustrated in Fig. 3 for a 
unit step perturbation in heat exchanger output variable (from its equilibrium value).  

When the network delay 𝑕  is made zero, the system equation (3) becomes  

𝑥  𝑡 =  𝐴 + 𝐴𝑑 𝑥(𝑡)                                                                  (21) 

 

Fig. 2 The Maximum value of 𝑲𝑰 for different values of 𝑲𝑷 

 

Fig. 3 Evolution of ∆𝜽𝑯 𝒕  less than zero delay condition. 

Now, it is observed that the eigenvalues of the system state matrix and input matrix  𝐴 + 𝐴𝑑  depend on the controller 

parameters 𝐾𝑃  and 𝐾𝐼.  Table II given the maximum values of 𝐾𝐼𝑠
−1 for a fixed value of 𝐾𝑃  for which the temperature 

control of heat exchanger system is on the verge of instability i.e. having one complex-conjugate pair of eigenvalues on 

the 𝑗𝜔 axis.  It is observed from the Fig .3 that there is a tendency for the curve to decrease gradually with increase of 𝐾𝐼. 

In this case study corresponding to temperature control of heat exchanger system with constant additive time-delays, the 
exogenous load disturbance effect of temperature control of heat exchanger system is assume to satisfy the norm-
bounded condition is given in (3) and (4); the value of two matrices G and F are taken as 0.1𝐼𝑛where n is the size of the 

system state vector 𝑥(𝑡), using Jenson integral inequality lemma stated for theorem1, the maximum value of the delay 

bound 𝑕 1 and 𝑕 2 is calculated for temperature control system for various values of 𝛼 and 𝛽, as shown in Tables III and IV 
(refer Fig. 4 Stability margin for Temperature control of heat exchanger system).  In the tables, it is clearly shows that as 
the values of 𝛼 and 𝛽 increases, the load disturbance effects for the temperature control system become more 

pronounced, and under such load disturbed condition, the maximum value of network delay that the PI  controlled 
temperature control of heat exchanger system withstand without losing stability decreases. 

These results clearly bring out the effect of load disturbance on the delay-dependent stability of the temperature control 
system.  Hence, delay-dependent stability analysis of temperature control of heat exchanger system with load perturbation 
being modelled as bounded non-linear load disturbance with respect to current and delayed state vectors has not been 
reported so far literature; the results presented in this paper portray a more realistic system operating condition.  The 
nominal system condition (i.e. when 𝛼 = 𝛽 = 0) with two additive constant time-delays, the presented results (for 

ascertaining internal stability) are less conservative, and this is attributed to the higher bounding of the Lyapunov-
Krasovskii (LK) functional in the stability analysis using the Jenson integral inequality as shows in Table V (for various 

values of 𝐾𝑃  and 𝐾𝐼 ).  For choosing the controller parameter 𝐾𝑃 = 0.5 and 𝐾𝐼 = 0.02𝑠 −1, in the presence of network 
induced delays, according to the delay-dependent stability criterion presented in Theorem 1, the temperature control of 
heat exchanger system is stable upto 𝑕 1 = 1 second 𝑕 2 = 18.3357 seconds, and if network induced delays is increases 

far beyond this value, the system becomes unstable. 
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Table .2 Maximum Integral Controller Gain for A Given 𝑲𝑷  

Sl.No
: 

𝑲𝑷  𝑲𝑰 (𝒔 −𝟏 ) Eigen values of (𝑨 + 𝑨𝒅) 

1 0 0.062 
-0.4329±0.009j; -0.0004;-

0.0790 

2 1 0.248 
-0.0000±0.167j; -0.5801;-

0.2864 

4 2 0.382 
-0.0001±0.223j; -0.6415;-

0.2250 

5 3 0.466 
-0.0000±0.267j; -0.6885;-

0.1781 

6 4 0.499 
-0.0000±0.305j; -0.7282;-

0.1385 

7 5 0.482 
-0.0000±0.339j; -0.7631;-

0.1036 

6 6 0.415 
-0.0001±0.370j; -0.7946;-

0.0719 

8 7 0.298 
-0.0000±0.398j; -0.8236;-

0.0430 

9 8 0.130 
-0.0000±0.425j;-0.8506;-

0.0160 

 

Table. 3 Maximum Allowable Delay Bound 𝒉 𝟐  for a given 𝒉 𝟏 .  

 

 

 

 

 

 

Table. 4 Maximum Allowable Delay Bound  𝒉 𝟏  for a given  𝒉 𝟐 . 

 

 

 

 

 

 

Fig. 4 Stability margin for Temperature control of heat exchanger system 

 

 

 

 

Method 𝜶 𝜷 𝒉 𝟏 = 𝟎 . 𝟏  𝒉 𝟏 = 𝟏  
𝒉 𝟏

= 𝟓 . 𝟎  
𝒉 𝟏

= 𝟏𝟎  

Theorem 
1 

0 0 19.2352 18.3357 14.3363 9.3366 

0 0.005 10.6649 9.7651 5.7652 0.7652 

0.005 0.005 # # # # 

Method 𝜶 𝜷 
𝒉 𝟐

= 𝟎 . 𝟏  
𝒉 𝟐 = 𝟏  𝒉 𝟐 = 𝟓 . 𝟎  𝒉 𝟐 = 𝟏𝟎  

Theorem 
1 

0 0 19.2358 18.3357 14.3363 9.3363 

0 0.005 10.6652 9.7653 5.7651 0.7651 

0.005 0.005 # # # # 
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Table 5.  Maximum Delay Bound for 𝒉𝟐  given 𝒉𝟏  with various controller gains 

𝑲𝑷  𝑲𝑰  𝒉𝟏 = 𝟏  
𝒉𝟏

= 𝟓  
𝒉𝟏 = 𝟖  

𝒉𝟏

= 𝟏𝟎  

0.20 0.01 38.29 34.29 31.29 29.29 

0.20 0.02 17.49 13.49 10.49 8.49 

0.20 0.03 10.10 6.10 3.10 1.10 

0.50 0.01 26.71 22.71 19.71 17.71 

0.50 0.02 18.33 14.33 11.33 9.33 

0.50 0.03 13.08 9.08 6.08 4.08 

0.75 0.01 16.24 12.24 9.24 7.24 

0.75 0.02 13.75 9.75 6.75 4.75 

0.75 0.03 11.40 7.40 4.40 2.40 

1.0 0.01 10.88 6.88 3.88 1.88 

1.0 0.02 9.90 5.90 2.90 0.90 

1.0 0.03 8.87 4.87 1.87 # 

Conclusion 

In this paper, a robust stability criterion is proposed for a class of linear continuous time system with constant additive 
state-delays and bounded nonlinear perturbations using Lyapunov-Krasovskii functional approach the Jenson integral 
inequality, and it is expressed in Linear Matrix Inequalities (LMI) framework.  The effectiveness of the proposed is 
illustrated in temperature control of heat exchanger system.  The possibility of extending the proposed analysis procedure 
for an equivalent discrete-time system can be explored as a future work.  
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