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ABSTRACT 

Aim : Lithium – pilocarpine  (Li-Pc) - induced seizures in rodents serve as convenient animal models to study the 

mechanisms of epileptogenesis particularly with reference to the development of status epilepticus (SE), memory 
retention, neurotransmitters and oxidative stress systems in the brain hippocampus which may be involved in the 
modulation of SE. In the present study, adult male mice were used to study the neuroprotective effects of pentoxifylline 
(PTX) against Li–Pc induced SE.   

Materials and Methods : All SE-induced animals were pre-treated with 0, 20, 40, and 60 mg/kg PTX and were 

examined for all peripheral cholinergic signs, stereotyped and clonic movements, seizures, tremors, latency to and 
frequency of SE, and mortality if any within 24h. For assessing the memory retention capacity, the animals were subjected 
to shuttle-box test. Alterations in the oxidative stress indices like thiobarbituric acid reactive substances (TBARS), 
glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) and the monoamine levels of dopamine (DA) and 
serotonin (5-HT) were determined in the hippocampus of the SE-induced animals.  

Results : Pre-treatment with PTX attenuated the severity and frequency of epileptic seizure activities and learning 

capabilities significantly and dose-dependently in the SE-induced animals. Animals sacrificed 24 h later after SE induction 
resulted into a significant depletion of the monoamines and oxidative stress in the hippocampus and PTX pre-treatment 
reversed this condition. 

 Conclusion : It was concluded that PTX may be having neuroprotective effects through possible involvement of 

brain monoamines and oxidative stress as prophylactic/therapeutic potentials in seizure mechanisms against SE.  
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INTRODUCTION 

Seizures and status epilepticus (SE) can inflict harmful effects in the brain of the developing child resulting into cognitive 
impairment (1, 2). Thus, there is a need of therapeutical agents that can ameliorate the seizure-induced changes and 
impairments in the developing brain. In spite of extensive research, aetiopathology of SE remains far from clear. Various 
neurotransmitters like adenosine, norepinephrine (NE), dopamine (DA), serotonin or 5-hydroxytryptamine (5-HT), 
glutamate, γ-aminobutyric acid (GABA), in different brain areas are known to be affected by seizure and SE activities (3 – 
9). Alterations in many other neurochemicals related to seizures, memory retention and oxidative stress have also been 
detected in seizure-induced rats (10 – 12). Due to high  mortality of animals in pilocarpine (alone) model (13), a 
combination of  lithium chloride and pilocarpine (Li-Pc) model is often preferred as an ideal experimental model that has 
been frequently used to study the  pathophysiology and management strategies of SE (14, 15).  

Pentoxifylline (PTX) is a methylxanthine derivative and a nonspecific type 4-phosphodiesterase inhibitor. PTX has shown 
to attenuate ischemic brain injury in rats (16, 17), improve learning and cognitive processes following lesions in the 
hippocampus of the rats (18) and prevent brain injury in stroke prone rats (19). In recent years, PTX was found to exert 
neuroprotective  activity  possibly by improving  cerebral functions in various experimental models (18, 19). Furthermore, 
PTX has been demonstrated of potentiating anticonvulsant effects in various animal models of epilepsy by improving 
neurotransmitters and neurochemical changes in their brain (20 – 22).  In perspective of the association of Li-Pc induced 
seizure activities with monoamine levels and oxidative stress in different brain regions, the aim of this study was to 
investigate the effect of PTX on various monoamines and oxidative stress in the hippocampus of mice induced for SE by 
Li-Pc treatment. 

MATERIALS AND METHODS 

Animals: 

Adult male Swiss-Webster strain mice (8-10 weeks old), housed in the animal facility under controlled conditions with 12 
hour light-dark diurnal cycle, temperature 22±1°C, humidity 50-60% and free access to food and water ad libitum were 
used in the present study. All precautions were taken to minimize animal stress and suffering by following the approved 
study protocols and animal handling procedures of the Research and Ethics Committee of  College of  Science, King Saud 
University, Riyadh, Saudi Arabia. 

 SE induction and drug treatment: 

The animals were randomly divided into seven groups with 10 animals in each. The animal groups 1 to 4 were induced 
with SE by administering a saline solution of lithium chloride (Li) in 3 mEq/ml/kg concentration i.p., followed by (20 h later) 
pilocarpine hydrochloride (Pc) administration s.c. in 20 mg/ml/kg concentration.  PTX (Sigma, USA) was also dissolved in 
saline solution and was administered at doses of 0, 20, 40 and 60 mg/mL/kg i.p., 30 min before Pc injection, to all 4 
groups of animals. The pups in groups 5, 6 and 7 served as controls and received saline, Li and Pc respectively in same 
doses as mentioned above. 

 Behavioral assessment: 

Observations for seizure activities 

The animals were observed for the behavioral signs of convulsions and seizures in a sequence of  peripheral cholinergic 
signs (PCS), stereotyped movements (STM), clonic movements of forelimbs, head bobbing, tremors and seizures, which 
later developed progressively into SE within 1– 2 h (23) and mortality if any, within 24 h, was also recorded. 

Shuttle-box test (active avoidance responses) 

The learning capabilities of the animals were measured in a shuttle-box (Ugo Basile, Comerio-Varese, Italy) as described 
elsewhere (24). During the 50 trials session of each animals, the total numbers of avoidance (reinforced crossings) and 
the latency of avoidance (escape latency in seconds to avoid the shock treatment), were measured. 

Biochemical studies: 

For biochemical assessments, the animals were sacrificed by decapitation 24 h after SE induction and the brains were 
dissected on ice and the hippocampus were removed and frozen in liquid nitrogen (-70°C) for determination of 
monoamines and oxidative stress indices. 

Determination of monoamines 

The monoamines were estimated using the modified method of  Patrick et al. (25). A 10% homogenate of the tissues were 
prepared by homogenizing for 10 seconds in 0.1M HClO4  containing 0.05% EDTA, centrifuged at 17,000 rpm at 4°C for 
5min. The supernatants thus obtained were micro filtered and analyzed by high performance liquid chromatography 
(HPLC) to estimate the levels of dopamine (DA) and serotonin or 5-hydroxytryptamine (5-HT) using a calibration curve and 
the results were expressed as ng /mg tissue weight. 
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Determination of oxidative stress indices 

Lipid peroxides ( TBARS) 

The lipid peroxides in the form of TBARS was determined spectrophotometrically according to the method of Ohkawa et 
al. (26) and the activity was expressed as nanomoles of TBARS formed oer gram tissue weight. 

Glutathione (GS) 

Total GS was measured enzymatically (27) and the activity was expressesd as nanomoles per gram tissue weight. 

Superoxide dismutase (SOD) 

The SOD activity was assayed using xanthine and xanthine oxidase to generate superoxide radicals (10) and the results 
were expressed as U/mg protein. Protein was assayed by the method of Lowry et al. (28). 

Catalase (CAT) 

CAT activity was determined by the method of Chance and Maehly (29) and the activity was expressed as mmol/min/mg 
protein. Protein was assayed by the method of Lowry et al. (28). 

Satistical analyses: 

        The mean values of the data of all study groups were compared by ANOVA with respect to the controls and within 
the experimentally treated groups using post-hoc testing and Student-Newman-Keuls  Multiple Comparisons Tests. 
Results were expressed as means ± SEM and the differences were considered to be statistically significant when p<0.05. 

RESULTS 

Development of seizures and SE: 

After Pc injections, the animals started developing a gradual and significant change in their behavior. The convulsive 
episode (PCS and STM) consisted of  the bobbing of  heads with intermittent forelimbs and hindlimbs clonus, loss of 
posture, hyperextension of tails, , falling back and myoclonic jerks. These sequential behavioral changes built up into SE 
in 100% of the animals. The developed SE lasted for more than one hour on average and only 10% mortality was 
observed in the SE animals over a period of 24h following Pc injections. PTX significantly and dose-dependently increased 
the latency to seizure and reduced the severity, frequency and intensity of seizure, PCS and STM characteriatics (Table 
1). Furthermore, pre-treatment with PTX caused no mortality at all in all the three doses as  compared to the Li-Pc (SE) 
treated group (Table 1). The control groups that received Li or PTX (20, 40 and 60 mg/kg) alone, did not show any signs of 
seizure or SE in any of the control groups (data not shown). 

Table 1: Effect of pentoxifylline (Ptx) on lithium pilocarpine-induced seizures and SE related behavioral changes 
in young rats. 

 

Ptx     Seizures Latency to seizure SE   Latency to SE  Mortality  (%) 

(mg/kg)          (%)                         (min)  (%)         (min)                           Within 24 h 

------------------------------------------------------------------------------------------------------------------------------------------------ 

 

0       100        10.74 ± 1.78  100     21.52 ± 1.18                 10 

 

20        80          17.35 ± 1.53
ns

    60
a
     41.48 ± 1.73

a
                    0 

 

40        50                   26.83 ± 1.38
a
    30

a
     52.41 ± 2.16

a
                        0 

 

60       10           43.51 ± 2.32
a
    10

a
     97.46 ± 2.83 

a
                         0 

 

Abbreviation :  SE – status epilepticus;   
ns 

– non significant

a 
p<0.001 compared to control (0 mg/kg) by ANOVA followed by Student-Newman-Keuls Multiple Comparisons Test  
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Learning capabilities in shuttle-box test: 

In the shuttle-box test, the SE-induced animals showed a statistically significant (p<0.001) decrease in the number 
of avoidances during the reinforced trial period as compared to the control group (Fig. 1A). Furthermore, the total time 
taken by these animals to enter the other compartment to avoid the shock treatment (latency of avoidance or escape 
latency response in seconds) was significantly (p<0.001) greater as compared to the controls (Fig. 1B). Animals induced 
with SE were poor learners and took significant time in avoiding the shock treatment. However, PTX pre-treatment 
attenuated these effects significantly in a dose –dependent manner (Fig. 1 A and B). 
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Figure 1: Effect of Ptx pretreatment on the cognitive (learning) capabilities of the seizure-induced mice in the 
shuttle-box test showing the total time taken by the animals (total latency) in avoiding the shock treatment (1A) 
and the number of reinforced crossing of the chambers by the animals (1B) for avoiding the shock treatment 
during the light and sound stimuli. 

Abbreviations : Ptx – pentoxifylline; Li – lithium; Pc – pilocarpine; SE – status epilepticus. 

# shows significantly (p< 0.001) different from control and *, ** and *** show significantly (p<0.05; p<0.01 and 
p<0.001 respectively) and dose-dependently different as compared to SE group by ANOVA followed by Tukey’s 
and Student’s tests. 

Biochemical studies in hippocampus tissue: 

Levels of monoamines                                                               

A significant (p<0.001) depletion in the DA and 5-HT  (Fig. 2A and B) of the SE group was noticed as compared to the 
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controls. Animals pre-treated with PTX, significantly and dose-dependently ameliorated the Li-Pc induced effects (Fig. 2A 
and B). 
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Figure 2: Levels of dopamine (DA) and serotonin (5-hydroxy-tryptamine or 5-HT) in the hippocampus of male mice 
(2A and 2B respectively). The levels of DA and 5-HT were significantly (#, p<0.001) depleted in SE groups as 
compared to controls whereas Ptx pretreatment showed a dose-dependent and significant (*, ** and *** showing 
p<0.05, p<0.01 and p< 0.001 respectively) attenuating effect as compared to the SE groups by ANOVA followed by 
Tukey’s and Student’s test. 

Abbreviations are the same as in Figure 1. 

Levels of TBARS 

TBARS in the hippocampus were significantly (p<0.001) increased in the SE-induced animals and pre-treatment with PTX 
had a significant (P,0.001) and dose-dependent attenuating effect (Fig. 3 A). 

Levels of GSH 

GSH was significantly (p<0.001) depleted in the hippocampus of SE-induced animals and pre-treatment with PTX had a 
significant (p<0.001) and dose-dependent attenuating effect (Fig. 3 B). 
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Figure 3: Effect of LiPc induced SE on the oxidative stress depicted by increased level of thiobarbituric acid 
reactive substances (TBARS) shown in Figure 3A and decreased level of total glutathione (GSH) shown in Figure 
3B in the hippocampus of the male mice as compared to the control (# showing p<0.001). Ptx pretreatment 
showed a dose-dependent and significant (*, ** and *** showing p<0.05, p<0.01 and p< 0.001 respectively) 
attenuating effect as compared to the SE groups by ANOVA followed by Tukey’s and Student’s test. 

Abbreviations are the same as in Figure 1. 

Levels of SOD and CAT 

The levels of SOD and CAT remained unaltered in the hippocampus of the SE-induced animals and pre-treatment of 
these animals with PTX increased the activity of SOD and CAT significantly (p<0.01) and dose-dependently (Fig. 4 A and 
B respectively).  
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Figure 4: Effect of LiPc induced seizures on superoxide dismutase (SOD)  and catalase (CAT) activities showing 
no changes in the level of enzyme activities in the hippocampus of the male mice of SE group as compared to the 
control as shown in Figure 4A and 4B respectively.  However, Ptx pretreatment showed a dose-dependent and 
significant (*, ** and *** showing p<0.05, p<0.01 and p< 0.001 respectively) increase in the level of SOD (4A) and 
CAT(4B) as compared to the SE groups by ANOVA followed by Tukey’s and Student’s test. 

Abbreviations are the same as in Figure 1. 

DISCUSSION 

The present results demonstrate that pharmacological intervention using PTX, significantly attenuated SE induced seizure 
activities and learning capabilities and also ameliorated the levels of monoamines and oxidative stress in the hippocampus 
area of the brain. The mechanism of neuroprotective effect of PTX is not fully understood, however, it has been shown to 
exert neuroprotective effects in many seizure models (18, 21, 22). PTX is a dimethylxanthine derivative and is known to 
exert its pharmacological effects by different mechanisms (20, 30). cAMP plays a major role as a second messenger in 
biochemical processes regulating the cognitive and memory processes (31, 32). Alteration in the cAMP content in the 
cerebral cortex has been reported in the chemically induced epilepsy (33, 34). Like rolipram, PTX also has the ability to 
increase cAMP levels that may also exert neuroprotective effect (22, 35). Furthermore, PTX is an adenosine receptor 
antagonist and it plays an important role in the progression of seizures and SE (36). Furthermore, adenosine is a natural 
neuroprotactant with anticonvulsant action (37). Impairment of learning capabilities in rodents with SE has been reported 
by several investigators (38, 39). In the present study, pre-treatment of mice with PTX dose-dependently attenuated the Li-
Pc – induced seizure activities and neurobehavioral abnormalities.  

Several neurotransmitters have been associated with the pathogenesis of SE (8, 9). Altered brain monoamine contents 
have been reported following experimentally induced SE in rats (6, 9) and in human epilepsy (40). The results of the 
present study showed that DA level reduced significantly in the hippocampus of the SE-induced animals (Fig. 1A). Role of 
DA mediated inhibition of D2 type receptors has been reported in depressing the hyperexcitability of hippocampus neurons 
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which are considered to be involved in SE (40, 41). Furthermore, in the present study, a decrease in 5-HT level in the 
hippocampus (Fig. 1B) is consistent with the hypothesis suggesting a significant decrease in synthesis and release of 5-
HT during SE (9). A definite role of 5-HT has also been suggested in myoclonic epilepsy (42). In spite of numerous 
studies, a definite role of monoamine neurotransmitters in SE is yet to be established. 

The significant increase in TBARS and decrease in GSH in the hippocampus of mice with SE in the present study clearly 
suggests for a high level of oxidative stress through increased free-radicals production. Moreover, the neuroprotective 
effect of PTX may be due to reduction in the formation of free-radicals during Li-Pc – induced seizures. On the contrary, 
there was no alteration in the SOD and CAT activities suggesting that these enzymes were not activated or affected during 
the phase of seizures development. It has further been demonstrated that PTX pre-treatment increased these antioxidant 
enzymes in the hippocampus which was probably a necessary consequence due to inhibition in the formation of free-
radicals by PTX during convulsion process. Such increase in antioxidant enzymes activities in presence of PTX, while 
reduces free-radicals formation, also produces a significant decrease in the susceptibility to seizures induced by Li-Pc. 
Earlier study with buspirone also supports this finding (43).  

CONCLUSION 

The result of the present study showed antiepileptic effect of PTX accompanied by attenuation of convulsions and learning 
capabilities in the SE-induced animals. Furthermore, attenuating effects on the SE related brain monoamines and 
oxidative stress indices suggest for evidence that free-radical formation has a relevant role in the propagation of seizure 
activities and PTX could be used as anti-convulsion drug. Although it is evidenced from the present study that 
monoamines and oxidative stress have a definite role in epileptic activity, the exact mechanism of epileptogenic activity of 
PTX warrant further studies. 
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