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ABSTRACT 

The effect of a modulated electromagnetic field on the cytoskeleton is possible through the action of voltage-sensitive 
phosphatase (VSP). Field-controlled phosphorous hydrolysis could have important roles in cytoskeleton restructuring, as 
well as in resonant-type behavior. 
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INTRODUCTION 

The voltage-sensitive phosphatase (VSP) [1] is sensitive to external fields and at the same time acts in the cytosol, where 

it allows the transfer of the external field effect into the cell interior. This generates biochemical signals that could play a 

role in intracellular organization. Through these signals, we should be able to generate biochemical signals in the cytosol 

to control some internal processes, most probably the polymerization of the cytoskeleton. The basic mechanism is that 

membrane depolarization hydrolyzes phosphoinositol [2]. This process is mediated by the transformation of 

  35,4,3 PPtdIns  to   25,4,3 PPtdIns and releases one molecule of phosphorous into the cytosol.  

Based on this mechanism [2], the chemical reaction is as follows:  

 

    23 5,4,35,4,3 PPtdInsPPtdIns







 

(1) 

This is a reversible decomposition reaction, where the reaction rates   and 


 can be modified by the membrane 

potential, and through this mechanism by the external electric field. In this study, we will show induced stochastic 

resonance by the action of an external AC field. Furthermore, multiple processes are generated in the cytosol, including 

local 
  25,4,3 PPtdIns , which controls the cytoskeletal network. This control is based on the activation/deactivation of 

microtubule-associated proteins (MAPs) by phosphorous. The phosphorylation of MAP destabilizes microtubules by 

weakening their internal bonds [3].  

One of the differences between quiescent and proliferative cells is the lower absolute value of the membrane potential of 

the latter [4]. This low membrane potential especially characterizes malignant cells [5]. This means that cancerous cells 

are permanently in a depolarized state, so their VSPs keep the level of 
  25,4,3 PPtdIns

 molecules high, which 

influences their cytoskeleton. The low level of cytoskeletal polymerization ensures the higher mobility of malignant cells. 

The presence of 
  25,4,3 PPtdIns  is essential for the proper function of numerous ion channels and transporters as 

well as for moving vesicles. This mechanism mediates the active influence of an external electric field on cell intercellular 

electrolyte levels and protein connections. An increase the concentration of 
  25,4,3 PPtdIns

 stimulates the operation 

of phosphorous-sensitive KCNQ potassium channels and inhibits the operation of the SNC5A8 sodium co-transporter. 

This dynamic stability is governed by the Le Chatelier principle: a sudden change (e.g. drop) in membrane potential 

generates phosphorylation and increases the transport of potassium in parallel with the suppression of sodium transport; 

this complex process tries to maintain the original membrane potential. This effectively interacts with the proliferation 

process. The SNC5A8 sodium co-transporter reduces the concentration of co-transported mono-carboxylate, which 

reduces the concentration of butyrate in the vicinity of histone deacetylase (HDAC), stimulating its activity, and 
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consequently the rate of proliferation increases [6].SLC5A8 is also a tumor suppressor, and is inactive in proliferating 

tumors. Phosphorylation influences this suppressor. 

A few processes where VSP could play a role  

Role of VSP in anaerobic glycolysis and cancerous transformation 

The effect of stress on homeostatic control generally activates the production of chaperone stress proteins. This 

production consumes ATP, and in this way decreases the ATP-dependent active membrane transport of ions, causing 

depolarization of the cell membrane. The phosphorylation of VSP is activated by this process. This effect decreases the 

activity of the SLC5A8 tumor suppressor, and so the rate of proliferation increases. However, this further increases the 

demand for ATP, which cannot be produced in sufficient amounts by mitochondria. Thus, a process with higher energy 

flux is mandatory. This is known to occur in sport medicine, when a lack of oxygen for muscle activity initiates high energy-

flux anaerobic fermentative ATP production, which is regulated back to the normal level after activity ceases. However, in 

this case, when the stress is permanent and the cells are not able to escape from the demand of high energy-flux, 

oncogenes may be activated, which could be promoted by the inhibition of apoptosis and high concentrations of stress 

proteins. This situation is ideal for the development of cancer. The prolonged, unrecognized precancerous stage is likely 

characterized by this process battling with normal homeostatic regulation.  

One of the most characteristic tumor suppressor genes is PTEN, which interacts enzymatically with processes in the 
cytosol. This interaction is partly homologue to cytosolic part of VSP [7]. Note that the substrate of PTEN is phosphorous 
in the cell membrane, so it must come into contact with the membrane to mediate its activity. This could be a further 
coupling between PTEN and VSP. It is likely that an external electric field influences this coupling. 

Role of VSP in reorganization (polymerization ) of the cytoskeleton 

Cytoskeleton fibers follow the electric field [8], so direct current reorganizes the cytoskeleton [9]. Alternative current (AC) 

fields also reorganize the cytoskeleton, with the greatest influence at around 1 Hz [10]. This represents some kind of 

resonant effect with AC. We have shown that stochastic resonance [11] could describe this phenomenon, assuming a 

bistable two-position VSP state (similar to voltage-gated ion channels). 

To understand the underlying physics of stochastic resonance, we considered a bifurcative (bistable) potential-well. The 

noise constrains the particle to randomly oscillate in this double-well, and the time spending in one of the wells is a 

probability variable of time (P(t)) with an exponential distribution function:  

 

  KT

t

K

e
T

tP



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(2) 

The value of TK occupation time (so called Kramer’s time-scale) is determined by the generalized Arrhenius factor 

weighted by the average frequency f:  
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(3) 

Where the ΔU is the depth of the potential well and D is the average energy of the noise (if it is thermal, then D=kT). If the 

particle in the double well is under a periodic force Acos(Ωt) (where the amplitude A is small compared to ΔU; A<< ΔU/D), 

then the coupled wells periodically fluctuate up and down in opposite phase.  

At time t=0, the jump from right to left is more probable than at time t=π/2Ω, and opposite at time t=π/Ω. This means that 
the weak periodic signal (much weaker than the activation energy) synchronizes the jumps, but of course in a stochastic 
(and not deterministic) way. The stochastic resonance occurs at D*, when Kramer’s time is one half of the period time of 
the weak deterministic signal:  
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Consequently, the distribution function of the jumping time in the case of the noise modulated with a weak periodic signal 

will not be a rigorously monotonic decreasing function as in (3), but will have definite periods by maxima: 

 

 





12max nt
 

(5) 

and a considerable amplification of the weak periodic signal can be observed depending on the D* noise. The 

amplification also increases with decreasing frequency (at constant amplitude A). It is interesting that the amplification 

increases with decreasing amplitude A at the same signal frequency, and suddenly (at a threshold), the resonance 

disappears (the window phenomenon). This is likely the reason for the Adey window [12].  

By more rigorous calculations using Fokker-Plank equations: 

 the amplification of the system (η) is definitely determined at the frequencies fr=(Ω/2 π), 

 the spectral power density function has needle-like (similar to Dirac delta) peaks at frequencies (n fr) where n is an 
integer, 

 the power of these peaks depends on the amplitude A and noise power D. 

The stochastic resonance can be easily shown using a simple dynamic system, i.e. an over-smoothed non-linear 

oscillator, which can be described by the motion equation:  

  
     0cos  txaAtF

dx

xdU

dt

dx

 

(6) 

where the U(x) potential has two stable and one unstable (the middle) minima at X-, X+ and X0; F(t) is a random force 

(assumed for simplicity as white noise with s normal distribution and power D, A(x)cos(Ωt+φ0) and the exciting 

deterministic (periodic) signal; a is constant. 

The random force constrains the oscillation between the two stable states, so it jumps through the potential barrier:  

      XUXUU 0  

(7) 

The kinetics of the transition are determined by the height of the barrier (ΔU±), and the power D of the noise. The time τ± 

to stay at the actual minima (and the 1/τ±=r± transition rate) is determined from Kramer’s equation (3):  
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(8) 

The periodic potential will be modulated by time and its value oscillates at point X± in the opposite phase due to the 

periodic force: 
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(9) 

When D is small, the Fokker-Plank equation for the adiabatic approach for points X+ and X- is reduced to the probability 

master equation: 

  
            1 

 tptptptrtptr
dt

tdp

 

(10) 

The values of r± can be determined from equation (8), substituting W instead of U. When A(x)=1, the potential becomes 

simple:  
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(11) 

Hence from (10) we get:  

      tDAtp cos)(  
(12) 

where the A(D) amplitude and the ψ phase-shift are:  
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(13) 

The amplitude exhibits resonance-like behavior; in the case D=kT, we are speaking about thermal noise. The maximum 

depends on D noise amplitude or at D=const. The maximum is determined by the frequency. This is the typical frequency-

amplitude window formulated based on experiments [12].  

The reorganization patterns of the cytoskeleton are different for DC and AC  

In case of a DC field, the two sides of the cells are oppositely polarized, i.e. one is hyperpolarized the opposite side 

depolarized. Depolarization hydrolyzes phosphorous, and thus initiates the formation of the cytoskeleton on the 

hyperpolarized side. This gradient connecting the two opposite polarizations forms a pattern similar to the electromagnetic 

field. In the case of AC excitation, both poles are in stochastic resonance (simply referred to as north and south), and both 

are hyperpolarized, inducing reorganization. On the other hand, the east and west poles have no resonance, so 

phosphorylation is normal, and the general gradient of phosphorous shows an east-west direction. The reorganization of 

the cytoskeleton has a definite driving force, building a pattern perpendicular to the DC-induced one.  

Explanation of resonance-like cytoskeleton reorganization by an AC field 

Denote the two chemical components with A and B in (1), for simplicity. In this case, the reversible decomposition reaction 

of (1) will be: 

 

BA





  

(14) 

The concentrations of the components are denoted by 
 A

 and 
 B

. So, based on (14), the kinetic equation will be: 

 

 

 

  ][
][

][
][

BA
dt
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(15) 
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Where αand βare the forward and reverse reaction rates. Reorganizing equation (15) into a more convenient form, let us 

introduce the values of 

 
][

][,
][

][],[][ 21 T
Bp

T
ApBAT 

 . 

Thus, (15) will be transformed into the master equation:  
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(16) 

 

To express the mathematical formula for 
 2,1, ipi  concentrations, consider the stationary state of (16), when 

0
dt

dpi

. Hence: 
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When E  are the deviations from the reference level, we assume the Boltzmann distribution: 
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(18) 

From where the reaction rates follow the Arrhenius law: 
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(19) 

Hence, for example calculating 1p
 from (16), we obtain the following differential equation:  
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(20) 

By expanding in the exponentials and stopping at the first order, the following linear differential equation is the result:  
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(21) 

When the strength of the electric field is a harmonic function over time, and the energy depends on it linearly, we write:  

 taE sin  
(22) 

And, consequently, the differential equation of the concentration is simplified: 
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(23) 

For further study this, when we are interested in the answer for harmonic excitation, we have to solve the stationary 

situation:  
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(24) 

The concentration following equation (24) has to change by a harmonic function over time and its amplitude depends on 

the kT noise strength:  

 

 

 

     

 

 

 

This function in (25) has a sharp maximum at a given frequency, depending on the noise strength (Figure 1.). 
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Fig. 1. The amplitude of the concentration (probability) vs. noise strength 
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This means that there is definite noise strength where the amplitude is maximal.  

When we modulate a large frequency signal (carrier frequency) with a low frequency, we use the Taylor expansion up to 

the second order for equation (20), generating:  
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(26) 

The modulated electric field-strength is used as a harmonic function over time and the energy has to depend on it linearly, 

so:  

 ttmaE sin)cos1( 
 

(27) 

where 1m  is the depth of the modulation, and   and   are the circular frequencies of the modulation signal and 

the carrier wave, respectively.  

Now, the time function of the concentration has two independent fluctuations: a slow one from the modulation and a quick 

one as a consequence of the carrier wave.  

By averaging the high-frequency carrier signal, the slow signal can be considered as constant, so we obtain: 
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When the modulation depth is small, a further simplification can be introduced, obtaining a linear differential equation with 

varying coefficients: 

 

)cos21(
22

1
1

))cos21(
2

2(2

2

1

2
1

tm
kT

a

ptm
kT

a

dt

dp





















 

(30) 

We are looking for resonances, so we limit our attention to the harmonic excitation function, using successive 

approximation.  
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Introducing the expressions: 
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(32) 

Which are continuous additive functions of p. 

Steps of successive approximation are: 
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Where we have: 
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When the process is convergent than in case of i→∞ the expansion seeks to the solution and due to the requested 

continuity, equation (32) will be transformed to: 
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(35) 

The solution will be in the first approximation: 
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(36) 

The amplitude of the probability changing by the modulating harmonic function will be:  
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(37) 

 

Which is again a well-formed resonance depending on the field strength of the modulating noise (Figure 2.). 
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Fig. 2. The probability amplitude vs. noise strength in the first approximation 
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DISCUSSION 

The above calculation had given rigorous proof that the amplitude-modulated carrier frequency is able to produce 

stochastic resonance, which could induce selectively various biological effects. For example, enzymatic reactions can be 

selectively excited, voltage-gated ion-channels can be activated or deactivated, and polymerization processes (like in the 

cytoskeleton) can be modified. Due to the huge number of various processes (enzymes, channels, etc.) and complex 

interconnections in bio-systems, the modification of complex processes is possible with an amplitude-modulated carrier.  

Of course, the modulating signal could also be active alone, but its combination with high frequency could allow for 

selection deeper in the body. A low frequency alone does not penetrate well due to the impedance barrier of the skin, by 

which the carrier frequency could be overbridged. Also, various other selections, which are connected to higher 

frequencies (e.g. beta and delta dispersions [13]) could select for various tissues [14] and with these targets even various 

clusters [15] or cells [16]:, allowing for selective action on their cell membranes [17] by the construction of a well-controlled 

nano-effect by an electromagnetic field [18], [19].  
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