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ABSTRACT 

Boron (B), an essential micronutrient, helps the plants to complete their life cycle successfully. Therefore, the 

present experiment was conducted to study (1) the role of B in seed germination and seedling growth, (2) the 

toxicity effect of B in seed germination and seedling growth and (3) the role of B in tolerance of barley (Hordeum 

vulgare L. var. ‘Bakore’) to NaCl stress. Under NaCl stress and non-stress conditions, application of high levels 

of B (100 µM) decreased parameters of germination (G%, VI, GI and MGT), growth (RL, SL, RFW, SFW, RDW and 

SDW), except the accumulation of Pro and MDA in barley seedlings. Also, a fluorescence study reveals that 

production of ROS (H2O2 and O2
•—) and non-viable cells increased in roots of barley seedlings treated with NaCl 

and high dose of B. An alteration in anatomical structure of barley seedlings was observed with the application 

of NaCl and high dose of B. However, a low concentration of B (50 µM) proved best and increased all germination 

and growth traits of barley seedlings by increasing further accumulation of Pro. Also, 50 µM of B significantly 

increased the biosynthesis of photosynthetic pigments (Chl a, b and total Chl) and deceased formation of ROS 

and viable cells in roots. Therefore, concluded that sufficient dose of B could be beneficial for barley plant in 

improving the tolerance to NaCl stress. 
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INTRODUCTION  

Like other essential nutrients, boron (B) is also a vital micronutrient for plants to complete their life cycle 

successfully. It plays a key role in cell wall formation by forming a crosslink between dimers of the pectin 

rhamnogalacturonan II which provides a stable and complex cell wall with decreased pore space (a low-

molecular-mass pectic polysaccharide) (Matoh, 1997; O’Neill et al., 2004; Corrales et al., 2008). B, a unique 

essential micronutrient, has a very thin line between toxicity and deficiency which is based on a suitable 

concentration. A suitable concertation of B varies among plants species and even among cultivars of the same 

species (Siddiqui et al., 2013; Keren and Bingham, 1985). Deficient and toxic levels of B in soil lead to the 

morphological and physiological disorder in plants. Some countries (India, China and US) of worldare suffering 

from the B deficiency, whereas arid and semiarid regions are affected by the B toxicity. The surface mining, fly 

ash and industrial chemicals are main source of elevated B (Nable et al., 1997). Area of some countries such as 

Chile, India, Peru, Israel, South Australia, North Africa, West Asia, Egypt, Iraq, Libya, Jordon, Morocco, Syria, 

Turkey, and the west coast of Malaysia are suffering from B toxicity (Yau and Ryan 2008). Like other abiotic 

stress, elevated levels of B in soil cause formation of reactive oxygen species [hydrogen peroxide (H2O2), 

superoxide (O•—) and hydroxyl (OH•—) radical], which cause oxidative damage by oxidizing lipids, proteins, and 

nucleic acids (Ardic et al., 2009; Cervilla et al., 2007). However, B in sufficient amount maintains cell membrane 

integrity and also improves the cellular defense mechanism in plants (Xuan et al., 2001; Siddiqui et al., 2013). 

However, the mechanisms involved in B tolerance and toxicity in plants are still poorly defined (Cervilla et al., 

2007; Fitzpatrick and Reid 2009). 

During the plant life cycle, the process of seed germination is an important event, which guarantees the better 

growth and survival of plants. The increased levels of B in the soil seize seed germination and inhibit cell wall 

expansion and photosynthetic pigment synthesis and also reduce lignin and suberin formation (Nable et al., 

1997; Reid 2007). Foliar application of B increased growth yield of tomato plant (Harris and Puvanitha, 2018). A 

high percentage of abnormal seedlings of black gram and green gram was observed with 9 mg B kg—1 (Rerkasem 

et al.,1989) and in other experiment low germination percentage was recorded with less than 6 mg B kg—1 (Bell 

et al., 1989). Rerkasem et al., (1997) conducted a preliminary unfertilized river sand experiment on soybean and 

reported that application of 10, 14, 16 and 20 mg B kg—1gave 98 to 100% germination but produced 26, 14, 5 

and 7% abnormal seedlings, respectively. Farag and Fang (2014) applied 0, 10, 25, 50 & 100 mg B L—1 on 

watermelon cultivars and found that high levels of B had not significant effect on seed germination percentage, 

but increased mean germination time and germination index. The NLN-medium contained 162 µM improved 

microspore embryogenesis in four genotypes of Brassica species, but no significant effect on plant conversion 

from the regenerated embryo was observed (Mahasuk et al., 2017). The available literature reveals that the role 

of B in seed germination is not fully understood. Therefore, the present experiment aimed to study (1) role of B 

in seed germination and seedling growth, (2) toxicity effect of B in seed germination and seedling growth and 

(3) role of B in tolerance of wheat/barley plants to NaCl stress.  

MATERIALS AND METHODS 

Preparation of seeds and boron application  

The experiment was performed under laboratory conditions using barley (Hordeum vulgare L. var. ‘Bakore’) 

obtained from a local market of Riyadh, Saudi Arabia. Sodium hypochlorite solution (10%) was used to sterilized 

selected healthy seeds. After 10 min of sterilization, seeds were rinsed properly with double-distilled water 

(DDW) before placing into Petri dish (Size 12 in) having a double layer of filter papers. One hundred fifty sterilized 

seeds were placed into each Petri Dish and all petri dishes were arranged in a simple randomized design with 

single factor and 4 replicates. Treatments of B were applied with and without NaCl as follows (1) 0 µM B + 0 mM 

NaCl (control), (2) 50 µM B + 0 mM NaCl, (3) 100 µM B + 0 mM NaCl, (4) 0 µM B + 100 mM NaCl, (5) 50 µM B 

+ 100 mM NaCl and (6) 100 µM B + 100 mM NaCl. To avoid evaporation, each Petri Dish was sealed with paraffin 

tape after supplying treatments. Boric acid was used as a source of B. The petri dishes of all treatments were 

placed in an incubator at 28 ± 3 °C.  
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We recorded germinated seeds number every day. To avoid contamination, after every 3 d, all treated seedlings 

were transferred into new sterile dishes having sterile filter papers soaked with same concentrations and volume 

of treatments. The potential of seed germination was assessed in terms of percent seed germination, mean 

germination time (MGT), germination index (GI) and vigour index (VI). At the end of the 2 week, length of root 

(RL) and shoot (SL), fresh weight of root (RFW) and shoot (SFW) and dry weight of root (RDW) and shoot (SDW) 

seedling−1 were measured. 

Determination of growth characteristics 

The seed germination rate was recorded every day from 2 to 14 d. Seeds were considered as germinated when 

their radicle showed at least 2-mm length.  

Germination percentage (GR%) was calculated with the suitable formula:  

𝐺𝑅(%)  =  (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑒𝑑𝑠 𝑠𝑝𝑟𝑜𝑢𝑡𝑒𝑑/𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑒𝑑𝑠 𝑠𝑝𝑟𝑜𝑢𝑡𝑒𝑑)  × 100 

 

Mean germination time (MGT) was determined according to Matthews and Khajeh-Hosseini (2007). 

Mean germination time = ∑ 𝐺𝑡/ ∑ 𝑡 

where G is the number of seeds newly germinated at the time of (t), and t is the number of days from 

sowing. 

Seedling vigour index (VI) was determined according to the given formula of Vashisth and Nagarajan 

(2010). 

𝑉𝑖𝑔𝑜𝑟 𝑖𝑛𝑑𝑒𝑥 (𝑉𝐼) = 𝑔𝑒𝑟𝑚𝑖𝑎𝑛𝑡𝑖𝑜𝑛% × 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ (𝑟𝑜𝑜𝑡 + 𝑠ℎ𝑜𝑜𝑡) 

Germination index (GI) was calculated according to the formula given by Tao and Zheng (1990). 

𝐺𝐼 =  ∑𝐺𝑡/𝐷𝑡 

where Gt is percent germination on each day (t) and Dt represents total number of days for germination. 

At the end of the 14 d, after taking seedling fresh weight, samples were then placed in an oven run at 60 °C for 

48 h for dry weight of seedling. 

Histochemical detection of reactive oxygen species (ROS) in roots of barley seedlings 

H2O2 was detected using the fluorescent probe 2'-7'- dichlorofluorescein diacetate (DCF-DA) following the 

method described by Tarpey et al.,(2004). H2O2 was detected by incubating roots with 25 µM DCF-DA (prepared 

in 10 mM Tris-HCl) for 30 min at 37°C. Thereafter, roots were washed in buffer and imaged using a fluorescence 

microscope at excitation and emission wavelengths of 480 and 530 nm. 

Superoxide radicals (O2
•—) were detected in the roots barley seedlings by using 10 µM dihydroethidium (DHE) 

following the method described by Rodriguez-Serrano et al., (2009). The signal of DHE was captured in the roots 

as red fluorescence (490 nm excitation; 520 nm emission). 

Root viability staining  

Roots of each treated plant were collected and stained with fluorescein diacetate (FDA) and propidium iodide 

(PI). Viable and non-viable cells of primary lateral roots cap weredetectedaccording to the method of Truernit 

and Haseloff (2008). Root tips were incubated for 20 to 30 min in a solution of 5 μg fluorescein diacetate in 1 

mL waterand a solution of 10 μg propidium iodide in 1mL water). Root tips of all samples were removed from 

solution and examined for viability and non-viability with afluorescence microscope at excitation and emission 

wavelengths of 488/505 and 530 nm for FDA, and 543 and 585 for PI, respectively. 

Anatomical observation of stem of barley seedlings 
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The samples were collected and stem sections were cut by hand using a sharp blade. The sections were stained 

with sarranine-fast green (counter-dying). All sections were observed with fluorescent microscope (Eclipse Ni-

U, Nikon, Tokyo, Japan), and images were captured by a DS-Ri1 camera (Nikon, Tokyo, Japan). 

Malondialdehyde  

In order to measure lipid peroxidationseedlings, malondialdehyde (MDA) concentration was estimated 

according to the procedure of Dhindsa et al., (1981). MDA concentration was calculated according to Heath and 

Packer (1968). 

Proline  

Proline (Pro) concentration in the leaf tissues of barley seedlings was measured spectrophotometrically via 

reaction with ninhydrin following the method of Bates et al., (1973).  

Statistical analysis  

All the treatments had four replicates and each Petri dish was treated as one replicate. The statistical 

analysis was performed using SPSS v17 statistical software (SPSS Inc., Chicago, IL, USA). The data were expressed 

as means ± standard error and means were statistically compared by Duncan’s multiple-range test (DMRT) at 

the p < 0.05 % level. 

RESULTS 

Data presented in Table 1 reveal that the application of low level of B increased all germination parameters (G%, 

VI, GI and MGT) of barley as compared to respective controls. However, high levels of B and NaCl decreased 

these germination characteristics of barley. In the present study, low levels of B improved these germination 

traits under NaCl stress. Appliaction of 50 µM B increased G% by 9.70%, VI by 89.90%, GI by 14.50% and MGT 

by 39.73% over NaCl treatment.  

Table 1 Effect of boron on the percent seed germination (G%), vigor index (VI), germination index (GI) and mean 

germination time (MGT) of Hordeum vulgare under NaCl stress. 

 

Treatments 

Parameters 

G(%) VI GI MGT 

Control 72.50±0.72b 1376.33±28.86b 72.48±0.70b 3.17±0.04b 

B1 79.32±0.64a 1718.34±30.05a 79.31±0.64a 4.15±0.08a 

B2 71.25±0.57b 1176.71±29.58c 70.59±0.87b 2.42±0.09c 

NaCl stress 60.23±0.50d 0429.41±19.38f 58.57±0.80e 1.46±0.07f 

B1+NaCl 66.07±0.44c 0815.47±14.39d 67.06±0.82c 2.04±0.05d 

B2+NaCl 68.02±0.84c 0670.51±08.16e 64.41±0.71d 1.77±0.04e 

Means of the each parameters followed similar letter within the column are not significantly different at the 0.05 

level of probability by Duncan's Multiple-Range Test. 

 Under non-stress condition, application of B (50 µM) significantly increased length of seedlings and 

other growth parameters of barley (Fig. 1 and Table 2). Under NaCl stress condition, barley seedlings had 

reduced all growth parameters, such as RL, SL, RFW, SFW, RDW and SDW. However, application low dose of B 

significantly improved RL, SL, RFW, SFW, RDW and SDW by 76.95, 49.58, 183.33, 101.88, 100 and 50%, 

respectively over the NaCl treatment.  

 Figure 2A and B shows the in situ production of ROS (H2O2 and O2
•— detected using DCF-DA and DHE 

respectively) in root of barley seedlings under stress and non-stress conditions. Under non-stress condition, low 
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levels of B gave relatively weak signal of green DCF fluorescence and DHE red fluorescence compared with high 

signal intensity of control. Also, NaCl treated root of barley seedlings exhibited a strong signal as compared to 

all treated roots. Also, Figure 2 C reveal that the apical cells of elongation zone of root treated with NaCl and 

high concentration of B were more severely damaged as compared with the mature zone (as produced strong 

green signal by FDA fluorescence probe; viable cells). Root treated with 50 µM B exhibited weak red signal of PI 

fluorescence (non-viable cells) as compared to roots treated with NaCl and high levels of B. Under NaCl stress. 

The viability loss in 50 µM B treated roots was detected lower as compared to viability loss in NaCl and 100µM 

B treated of roots of seedlings.  

Table 2. Effect of boron on root length (RL), shoot length (SL), root fresh weight (RFW), shoot fresh weight (SFW), 

root dry weight (RDW) and shoot dry weight (SDW) of Hordeum vulgare under NaCl stress. 

 

Treatments 

Parameters 

RL (cm) SL (CM) RFW (g) SFW (g) RDW (g) SDW (g) 

Control 6.25±0.26b 15.70±0.35b 0.032±0.002b 0.132±0.002 0.009a 0.0163±0.00012b 

B1 7.00±0.07a 18.23±0.72a 0.039±0.001a 0.161±0.005 0.008a 0.020±0.00058a 

B2 5.68±0.35bc 15.10±0.55b 0.035±0.002ab 0.122±0.002 0.006b 0.013±0.00058c 

NaCl stress 3.08±0.14e 08.43±0.57e 0.012±0.001c 0.053±0.004 0.003d 0.008±0.00058e 

B1+NaCl 5.45±0.26c 12.61±0.47c 0.034±0.0003b 0.107±0.003 0.006b 0.012±0.00033cd 

B2+NaCl 4.12±0.14d 10.73±0.533d 0.030±0.002b 0.092±0.002 0.004c 0.010±0.00033d 

Means of the each parameters followed similar letter within the column are not significantly different at the 0.05 

level of probability by Duncan's Multiple-Range Test. 

 

 

Under non-stress condition, accumulation of MDA decreased in seedlings of barley treated with 50 µM B over 

the control (Fig. 3). However, NaCl and 100 µM B treated barley seedlings exhibited a significant increase in 

MDA content compared to control. Under NaCl stress, low dose of B significantly decreased accumulation of 

MDA in barley seedlings. Application B (50 µM) decreased MDA content by 40.68% over the NaCl treatment.  

Figure 4 reveals that a clear change in the shape and size of vascular tissue and endodermis was observed in 

the stem section of both control and treated barley seedlings. NaCl treatment in the presence of low and high 

levels of B did not cause major changes in the organization of root tissue of barley seedlings after 2 week under 

NaCl stress.  

Under non-stress condition, accumulation of photosynthetic pigments increased in the leaves of barley 

seedlings with 50 µM B over the control (Fig. 5 A, B and C). Moreover, application of NaCl and 100 µM B 

Figure 1. Effect of boron on the length of seedlings of 

Hordeum vulgare under NaCl stress. 
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significantly decreased the synthesis of pigments (Chla, b and total Chl. Application of low levels of B was found 

to be effective in improving the accumulation photosynthetic pigments under NaCl stress. Treatment B (50 µM) 

increased Chla by 107.52%, b by 88.05% and total Chl 109.75% over the NaCl treatment.  

Figure 6 reveals that applications of B increased Pro accumulation under both NaCl stress and non-stress 

conditions. Also, application NaCl increased Pro content in barley seedlings. However, application of low levels 

of B (50 µM) significantly improved Pro content by 94.34% over the NaCl treatment. 

DISCUSSION 

Application of low concentration of boron (50 µM) to barley seedlings substrate generally improved 

germination, growth, physiological and biochemical characteristics (Tables 1 and 2, and Figs. 1, 5 and 6); 

however, high levels of B and NaCl were toxic to barley. 

It is fact that seed germination is regulated by a number of mechanisms, and good germination of seed insures 

the production of a new healthy plant. In the present experiment, application of NaCl caused inhabition of barley 

seed germination (Table 1). This may be overcome by inclusion of low concentration of B that induced seed 

potential by increasing seed germination parameters (G%, VI, GI and MGT) under both NaCl stress and non-

stress conditions. However, high dose of B and NaCl caused toxicity to seed germination, it may due to the over 

production of ROS (Fig. 2 A and B). Under NaCl stress, low concentration of B (50 µM) improved all germination 

traits; it may be due to the role of B in stimulation of seed germination by breaking seed dormancy and activating 

the activity of alpha-amylase in embryo and endosperm and also by increasing RNA levels (Cresswell and Nelson, 

1973). 

 

Low levels of B to barley seedlings enhanced plant growth under NaCl stress and non-stress conditions (Table 

2 and Fig. 1). This beneficial effect may be explained by its physiological roles; it helps in cell wall formation and 

Figure 2.  In situ visualization of ROS formation in 
primary roots using the fluorescent probe DCF-DA 

and DHE for (A) H2O2 and (B) (O2
—) respectively 

under salinity stress. FDA and PI staining of viable 
and non-viable primary root cap cells respectively; 
(C) overlay projection image of root stained with 
FDA (green) and PI (red).   
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plant tissue growth, because it is an important component of pectin rhamnogalacturonan II (a low-molecular-

mass pectic polysaccharide) (Matoh 1997; O’Neill et al., 2004) and also play a key role in the synthesis of 

macromolecules (nucleic acid, proteins, carbohydrates) and hormone (Goldbach et al., 2001; Jehangir et al., 

2017). A high concentration of B and NaCl decreased growth parameters; it may be due to their toxic effects on 

root cell division, photosynthetic pigments synthesis (Liu and Yang 2000; Herrera-Rodríguez et al., 2010; Khan 

et al., 2007; Siddiqui et al., 2009; 2013), and also they caused the formation of ROS (Fig. 2 A and B), resulting 

death of cells (Fig. 2 C).  

 

 The oxidative damage due to the toxicity of NaCl and high dose of B was measured by detecting of ROS 

(H2O2 and O2
—) in roots and estimating the accumulation of MDA in seedlings of barley (Figs. 2 A-C and 3). 

The increased values found for accumulation of MDA, and formation of ROS under both levels of NaCl and B 

(100 µM) were indicative of NaCl and B –activated cellular dysfunction through the production of lipid 

peroxidation that caused the death of cells (Fig. 2 C). An increase in MDA and H2O2 and O2
— due to B and NaCl 

was also observed by Siddiqui et al., (2009; 2013). However, low dose of B (50 µM) suppressed the production 

of ROS in barley seedlings; it may be due to the accumulation of Pro (Fig. 6) and also B improves the activity of 

antioxidant enzymes that scavenge ROS under stress (Siddiqui et al., 2013). In the present study, alterations in 

tissue organization were investigated for stem of barley seedlings under NaCl stress and high levels of B (Fig. 4). 

The result of this study complements other findings (Bastías et al., 2015; Ma et al., 2015) and confirmed the B-

induced tolerance to NaCl. 

 

Figure 3. Effect of boron on the content of 
malondialdehyde in Hordeum vulgare under NaCl 
stress. Bars followed by the same letter do not 
differ statistically at p < 0.05 (Duncan Multiple 
Range Test). Average of four determinations are 
presented with bars indicating S.E. Control.  

 

Figure 4. Effect of boron on the stem structure of seedlings of Hordeum vulgare under 

NaCl stress. VB: vascular bundle, ED: endodermis, PC: pericycle 
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Figure 5. Effect of boron on the content of (A) 

chlorophyll a, (B) chlorophyll b and (C) total 

chlorophyll under NaCl stress. 

 

 Photosynthetic pigments are important components in chloroplast and regulate the key process 

photosynthesis in plant. In the present study, the synthesis of photosynthetic pigments (Chla and b and total 

Chl) was severely affected by the NaCl stress and the higher dose of B (100 µM) (Fig. 5 A-C). This may be due to 

lipid peroxidation (Fig. 3) that could be the reason for oxidative damage of chloroplast and damage of reaction 

centers (Kyle, 1987). Siddiqui et al., (2013) reported that a high concentration of B caused inhibition of pigments 

synthesis. Also, high levels of B cause photooxidation damage to macromolecules (Cervilla et al., 2007). However, 

a low concentration of B (50 µM) improved tolerance of barley seedlings to NaCl stress by increasing pigments 

synthesis (Fig. 5 A-C). An increase in the content of Chla and b and total Chl may be due to the involvement of 

B in maintenance of cell integrity and improvement of antioxidant system that could protect chloroplast from 

oxidative damage (Xuan et al., 2001).  

 

 Compatible solutes are very important in plant to maintain osmotic adjustment during abiotic stress by 

lowering and balancing osmotic potential within the cells. In our study, Pro levels increased relative to the control 

when plant supplied a higher dose of B and NaCl (Fig. 6). At low concentration of B, Pro accumulation increased 

Figure 6. Effect of boron on the content of proline in Hordeum 

vulgare under NaCl stress. Bars followed by the same letter do not 

differ statistically at p < 0.05 (Duncan Multiple Range Test). 

Average of four determinations are presented with bars indicating 

S.E. Control.  
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further under NaCl stress. Increased Pro in barley seedlings at low levels of B may be one of the reasons for the 

tolerance of barley seedlings to salinity because Pro acts like an antioxidant and source of N and C and also 

regulates osmotic adjustment associated genes (Matysik et al., 2002; Iyer and Caplan 1998).  

CONCLUSION 

In conclusion, low levels of B significantly increased seed germination and growth of barley seedlings and NaCl 

and a higher dose of B caused inhibition of germination and growth characteristics and alteration in anatomical 

structure of barley seedlings. Results of this study reveal that pigments synthesis deceased and formation of 

ROS, lipid peroxidation and non-viable cells increased on the treatment with a high concentration of B and NaCl. 

However, low levels of B (50 µM) significantly inhibited the inhibitory effects of NaCl by reducing lipid 

peroxidation and the production of non-viable cells in roots through accumulation Pro. Also, a low concentration 

of B improves photosynthetic pigment synthesis under both stress and non-stress conditions.  
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