

ISSN 2278-5612

1881 | P a g e A u g u s t 1 0 , 2 0 1 4

Refining Complexity Metrics of Component Based Softwares by taking
Average Use Factor in Black Box Testing

Richa Mittal1, Ashima Singh2

1
Research Scholar, Thapar University, Patiala

richa_mittal1987@yahoo.co.in
2
Assistant Prof, Thapar University, Patiala

ashima@thapar.edu

ABSTRACT: We propose to compute the complexity metrics of component based software in more justified way by

taking considerations of their using frequencies. The complexity metrics calculation of the component Based software’s by
using black box testing is still not refined. The reason is that the various components are not used by the end users
uniformly. Again, use of various components depends upon user to user as per their requirements. So therefore
calculating straight forward their complexity on the basis of number of components, their interfaces and data types are not
sufficient. We must add the factor of their (AUF) average use factor by the customers of different components. As we
know that every algorithm or program have 3 complexity states i.e . a) Best Case b) Average case and c) Worst case. As
we know that each and every components of software is not used uniformly by the users. So calculating merely on the
basis of their no of components, interfaces and data types predicts only theoretical complexity of that software. If we wish
to calculate more justified complexity metrics then we must normalize these components on the basis of their frequency of
use in normal routine. As it’s quite possible that some modules or components are rarely used by common users. In this
case those components hardly influence the complexity of that software. Thus we can reduce significantly the complexity
of component based software which was earlier hypothetically calculated very high.

Keywords—AUF(Average Use Factor); Black box testing; STECC approaches; Logic component; I-BACCI Approach.

Black Box Component; CBSD; CBSDO; Component; Reusability Software Architecture.

Academic Discipline and Sub-Disciplines

Computer Science & Engineering, Software testing

TYPE (METHOD/APPROACH)

Case Study

Council for Innovative Research
Peer Review Research Publishing System

 Journal: International Journal of Management & Information Technology

Vol. 10 No. 2

editorsijmit@gmail.com

www.ijmit.com/ojs

http://www.ijmit.com/

ISSN 2278-5612

1882 | P a g e A u g u s t 1 0 , 2 0 1 4

INTRODUCTION

Component-based software development (CBD) is an emerging discipline that promises to take software engineering into
a new era. Building on the achievements of object-oriented software construction, CBD aims to deliver software
engineering from a cottage industry into an industrial age for Information Technology, wherein software can be assembled
from components, in the manner that hardware systems are currently constructed from kits of parts.

This volume provides a survey of the current state of CBD, as reflected by activities that have been taking place recently
under the banner of CBD, with a view to giving pointers to future trends. The contributions report case studies — self-
contained, fixed-term investigations with a finite set of clearly defined objectives and measurable outcomes — on a
sample of the myriad aspects of CBD.

This paper includes chapters dealing with COTS (commercial off-the-shelf) components; methodologies for CBD;
compositionality. We use case studies and complexity metrics formula and multiply it with the assumed usability factor
points for each component to calculate the complexity. We can use the statistical techniques for the validity of results. The
proposed algorithm can be implemented in any suitable programming language or Case Study. In this case those
components hardly influence the complexity of that software. Thus we can reduce significantly the complexity of
component based software which was earlier calculated very high.

Proposed work:

We use case studies and complexity metrics formula and multiply it with the assumed usability factor points for each
component to calculate the complexity. We can use the statistical techniques for the validity of results. The proposed
algorithm can be implemented in any suitable programming language or Case Study.

CASE STUDY

Microsoft Word 2007

For component based Black box complexity calculation I choose a popular MS Office suit :

Macro Components of MS Office 2007 :

The following are the Major or Macro components of MS office 2007 :

a) MS Access (For Database creation)

b) MS Excel (For Accounting spreadsheet)

c) MS Groove (File Sharing on Projects)

d) MS Infopath (Designing Forms)

e) MS One Note (Sharing Information)

f) MS Outlook (Email and Contacts)

g) MS Power Point (For Presentation)

h) MS Publisher (Edit news letter , Brochures)

i) MS Word (Word processor)

j) Digital Certificate for VBA Projects

k) Microsoft Clip Organizer

l) MS Language Setting

m) MS office Designing

n) MS Office Picture Manager

Total Installed space Occupied: 523 MB

MS Office Setup Size 562 MB

On the basis of survey a common user use above different available MS office package as follows:

Using Frequencies by average user (UF)

ISSN 2278-5612

1883 | P a g e A u g u s t 1 0 , 2 0 1 4

Table 1

Sl
No.

Macro MS
Office S/W

components

Rarely
Used

Less
Used

Moderate
Used

Extensive
Used

Continuous
Used

1 MS Access
(For
Database
creation)

 .2

2 MS Excel
(For
Accounting
spreadsheet)

 .5

3 MS Groove
(File Sharing
on Projects)

.1

4 MS Infopath
(Designing
Forms)

 .2

5 MS One Note
(Sharing
Information)

.1

6 MS Outlook
(Email and
Contacts)

 .3

7 MS Power
Point (For
Presentation)

 .4

8 MS Publisher
(Edit news
letter ,
Brochures)

 .2

9 MS Word
(Word
processor)

 .5

10 Digital
Certificate for
VBA Projects

.1

11 Microsoft Clip
Organizer

 .2

12 MS
Language
Setting

.1

13 MS office
Designing

 .2

14 MS Office
Picture
Manager

 .4

 Sum =3.5 .4 1.0 .3 .8 1.0

Using Frequencies by average user (UF)= Sum/(.1+.2+.3+.4+.5)*14

Or 3.5/(1.5)*14 Or, 3.5/21 = .16

Memory Occupancy of Components: (MOC)

ISSN 2278-5612

1884 | P a g e A u g u s t 1 0 , 2 0 1 4

 Table 2

Sl
No.

Macr
o MS
Offic
e
S/W
comp
onent
s

Me
mor
y

Occ
upa
ncy

(MB
)

Negli
gible
Mem
ory
Occu
panc
y

Less
Mem
ory
Occu
panc
y

Mode
rate
Mem
ory
Occu
panc
y

Large
Mem
ory
Occu
panc
y

Very
Large
Mem
ory
Occu
panc
y

1 MS
Acces
s (For
Datab
ase
creati
on)

28.3 .5

2 MS
Excel
(For
Acco
unting
sprea
dshee
t)

14.9 .3

3 MS
Groov
e
(File
Shari
ng on
Proje
cts)

4.30 .2

4 MS
Infop
ath
(Desi
gning
Form
s)

5.2 .2

5 MS
One
Note
(Shari
ng
Infor
matio
n)

31.1 .5

6 MS
Outlo
ok
(Emai
l and
Conta
cts)

9.2 .2

ISSN 2278-5612

1885 | P a g e A u g u s t 1 0 , 2 0 1 4

7 MS
Powe
r
Point
(For
Prese
ntatio
n)

14.4 .3

8 MS
Publis
her
(Edit
news
letter
,
Broch
ures)

12.0 .3

9 MS
Word
(Word
proce
ssor)

16.2 .4

10 Digita
l
Certifi
cate
for
VBA
Proje
cts

2.4 .1

11 Micro
soft
Clip
Orga
nizer

3.2 .2

12 MS
Lang
uage
Settin
g

2.1 .1

13 MS
office
Desig
ning

8.3 .3

14 MS
Office
Pictur
e
Mana
ger

8.5 .3

 Sum
=4.3

 .2 .8 1.5 .8 1.0

Memory Occupancy of Components: (MOC)= Sum/(.1+.2+.3+.4+.5)*14

Or MOC=4.3/21=0.2

System Recourses Uses: (SRU)

ISSN 2278-5612

1886 | P a g e A u g u s t 1 0 , 2 0 1 4

Table 3

Sl
No.

Macro MS
Office S/W
components

CPU
Uses

Graphics
&
Multimedia
Uses

Main
Memory
Uses

Buffer
memory
uses

Network
uses

1 MS Access
(For
Database
creation)

.5 .2 .3 .2 .1

2 MS Excel
(For
Accounting
spreadsheet)

.5 .2 .3 .2 .2

3 MS Groove
(File Sharing
on Projects)

.2 .2 .2 .3 .3

4 MS Infopath
(Designing
Forms)

.2 .2 .1 .2 .1

5 MS One
Note
(Sharing
Information)

.2 .2 .3 .4 .5

6 MS Outlook
(Email and
Contacts)

.2 .2 .3 .2 .5

7 MS Power
Point (For
Presentation)

.3 .2 .3 .3 .2

8 MS Publisher
(Edit news
letter ,
Brochures)

.2 .2 .3 .3 .2

9 MS Word
(Word
processor)

.3 .3 .3 .4 .2

10 Digital
Certificate for
VBA Projects

.1 .1 .1 .1 .1

11 Microsoft
Clip
Organizer

.1 .2 .2 .2 .1

12 MS
Language
Setting

.1 .1 .1 .1 .1

13 MS office
Designing

.2 .2 .3 .2 .2

14 MS Office
Picture
Manager

 .3 .2 .3 .3 .3

 Sum=15.7 3.1 2.7 3.4 3.4 3.1

Table Complexity = Sum/Max Weight age

Or , 15.7/(14*.5*5)=15.7/35=.44

Volume of Software Components (VSC):

ISSN 2278-5612

1887 | P a g e A u g u s t 1 0 , 2 0 1 4

 Table 4

Sl
No.

Macro MS
Office S/W
components

Too
Few

Few Moderate Rich Super
Rich

1 MS Access
(For
Database
creation)

 .5

2 MS Excel
(For
Accounting
spreadsheet)

 .5

3 MS Groove
(File Sharing
on Projects)

 .2

4 MS Infopath
(Designing
Forms)

 .2

5 MS One Note
(Sharing
Information)

.1

6 MS Outlook
(Email and
Contacts)

 .3

7 MS Power
Point (For
Presentation)

 .5

8 MS Publisher
(Edit news
letter ,
Brochures)

 .4

9 MS Word
(Word
processor)

 .5

10 Digital
Certificate for
VBA Projects

.1

11 Microsoft Clip
Organizer

.1

12 MS
Language
Setting

.1

13 MS office
Designing

 .3

14 MS Office
Picture
Manager

 .4

 Sum=4.2 .4 .4 .6 .8 2.0

System Recourses Uses: (SRU)= Sum/(.1+.2+.3+.4+.5)*14= 4.2 / 21=0.2

ISSN 2278-5612

1888 | P a g e A u g u s t 1 0 , 2 0 1 4

Table 5

Cumulative Occupied Memory of Installed components (COM)

S
l

N
o
.

 MS
Offic
e
Pack
age

Total
Mem
ory

Occu
pancy

(MB)

Negligi
ble
Memor
y
Occup
ancy

Les
s
Me
mor
y
Occ
upa
ncy

Mode
rate
Mem
ory
Occu
pancy

Large
Mem
ory
Occu
pancy

Very
Large
Mem
ory
Occu
pancy

1 MS
Office
2007

615
MB

 .4

Cumulative Occupied Memory of Installed components (COM) =

Weighted Memory Occupancy /.5 = .4/.5 = .8

 As we know that complexity depends primarily on following factors:

1) Memory Occupied

2) Execution time or Time to Live (TTL)

3) Resourced uses

4) Number of Components

5) Using Frequencies of components

6) DataType

The first factor is static. As memory occupied is a static feature and its not varies user to user .The second factor is
variable user to user depending upon their habit and needs.

However whatever the user’s age , education , need or habit to use a software package and its components ; a user can’t
use all the components uniformly. Thus the execution of such components does not affect the system uniformly and thus
we must made sufficient provision to reduce this theoretical complexity calculation.

In the above table we can say that rarely used software components less affects the complexity of software as most of
time they only occupies the memory of secondary storage which is available in abundant and not a critical resource .

Complexity Calculation

CCM(BBAU)= ∑(A+B+C+D+E)*E

Or CCM(BBAU)= ∑ (UF+MOC+SRU+VSC+COM) / N

 Where the terms stands for Using Component Complexity Metric Black Box Average Use(CCM(BBAU) , Frequencies
(UF) , Memory Occupancy of Components: (MOC), System Recourses Uses: (SRU), Volume of Software Components
(VSC) and Cumulative Occupied Memory of Installed components (COM). N= Number of Tables Used

Weighted Complexity Calculation: WCCM(BB)=(.16+0.2+.44+0.2+.8)/N

WCCM(BB)=1.80/5=0.36

Therfore final computed complexity of components of MS office Suit by using black box method is 0.36 which is
pretty good and falls within moderate complex software range .

Micro Software Components of MS Office :

MS Office is a jumbo software suit and contains huge number of micro components in each Macro component. Amongst
them we choose MS Word which is extensively used amongst all macro components for case study .

MS Word Software Components:

MS word is the biggest bundle of software components available in the package. For simplification we choose some
selected components amongst them for case study :

ISSN 2278-5612

1889 | P a g e A u g u s t 1 0 , 2 0 1 4

 Table 6

Microsoft Word Components

Sl
No.

Components
of MS Word

Rarely
Used

Less
Use

Moderate
Use

Extensive
Used

Extremely
Used

1 Find and
Replace

 √

2 Status bar √

3 Menu Bar √

4 Print √

5 Mail Merge √

6 Design √

7 Layout √ √

8 Table Tools √

9 Shapes

10 Word Art √

11 Font √

12 Formatting √

13 Equation
Editor

√

14 References √

15 Edit √

16 Spelling and
Grammar

17 Help √

18 View √

19 Translate √

20 Look Up √

21 Hyperlink √

22 Auto fit √

23 Page layout √

24 Symbols √

25 Workspace √

26 Save / Save
As

 √

ISSN 2278-5612

1890 | P a g e A u g u s t 1 0 , 2 0 1 4

We can use the same process for the micro software components for complexity computations in black box model.

Advantage of WCCM(BBAU) over othe available available blackbox component based software complexity
calculation methods:

Advantage of WCCM(BBAU) Component Complexity Metric (Black Box Average Use method) is more realistic and

simpler than all available complexity determining methods in black box methods. Its include the factor of Average Use
factor which earlier ignored . This reduces significantly the complexity computation than others who calculates theoretically
without considering end user requirement.

CONCLUSIONS

The earlier techniques ignores the usability factor of the different software components which are the most major aspect
and varies user to user . We propose to compute the complexity metrics of component based software in more justified
way by taking considerations of their using frequencies. The complexity metrics calculation of the component Based
software’s by using black box testing is still not refined. The reason is that the various components are not used by the
end users uniformly. Again, use of various components depends upon user to user as per their requirements. So therefore
calculating straight forward their complexity on the basis of number of components, their interfaces and data types are not
sufficient. We must add the factor of their average use by the customers of different components. As we know that every
algorithm or program have 3 complexity states i.e . a) Best Case b) Average case and c) Worst case. As we know that
each and every components of software is not used uniformly by the users. So calculating merely on the basis of their no
of components, interfaces and data types predicts only theoretical complexity of that software. If we wish to calculate more
justified complexity metrics then we must normalize these components on the basis of their frequency of use in normal
routine. As it’s quite possible that some modules or components are rarely used by common users. In this case those
components hardly influence the complexity of that software. Thus we can reduce significantly the complexity of
component based software which was earlier hypothetically calculated very high.

Although the CBSD is increasingly being adopted for software development, because of its advantages like reduction in
development effort, time and cost , increase in quality with many others. But it still consists of a number of issues or
factors that affect many aspects of CBSD like integration and testing effort and affect the produced software cost,
maintainability, quality etc Many of these factors or issues can be resolved by using the independent components or the

components with low coupling. Thus a technique has been proposed for the component based software development
organizations to be followed during the component based software development. Thus it will help in reducing the
integration effort, testing effort, cost and providing the more maintainable and good quality software system. After adding
the component using frequencies we can more justify the complexity metrics.

REFERENCES

[1] Navneet Kaur, Ashima Singh, ―A Complexity metric for black box components : International Journal of Soft computing
and Engineering , Volume-3, Issue-2, May 2013.

[2] Egon Valentini, Gerhard Fliess and Edmund Haselwanter,‖A Framework for Efficient Contract-based Testing of
Software Components‖. Proceedings of the 29th Annual International Computer Software and Applications
Conference [COMPSAC’05], IEEE, 2005, p.219-222.

[3] Fevzi Belli and Christof J. Budnik. ―Towards Self-Testing of Component Based Software‖. Proceedings of the 29th
Annual International Computer Software and Applications Conference [COMPSAC’05], IEEE, 2005,p.205- 210.

[4] Sami Beydeda. ―Research in Testing COTS Components Built-in Testing Approaches‖.3rd ACS/IEEE Conference on
Computer Systems and Applications, 2005 IEEE, 2005, p.101.

[5] Chengying Mao.‖Built-in Regression Testing for Component-based Software Systems‖.31st Annual international
computer software and Applications Conference [COMPSAC 2007], IEEE, 2007, p.723-728.

[6] Huaikou Miao, Shengbo Chen, Huanzhou Liu and Zhongsheng Qian,‖ An Approach to Generating Test Cases for
Testing Component-based Web Applications.Workshop on Intelligent Information Technology Application‖. IEEE,
2007,p.264-269.

[7] Jiang Zheng, Laurie Williams, Brian Robinson and Karen Smiley. Regression Test Selection for Black-box Dynamic
Link Library Components. Second International Workshop on Incorporating COTS Software into Software Systems:
Tools and Techniques [IWICSS'07]. IEEE, 2007, p.9.

 [8] Navneet Kaur, Ashima Singh, ―Generating More Reusable Components while Development: A Technique,
International Journal of Innovative Technology and Exploring Engineering , Volume-2, Issue-3, February 2013.

[9] W. B. Frakes and K. C. Kang, "Software reuse research: status and future," IEEE Transactions on Software
Engineering, vol. 31, pp. 529-536, 2005.

[10] M. Morisio , "Success and Failure Factors in Software Reuse," IEEE Transactions on Software Engineering, vol. 28,
pp. 340-357, 2002.

ISSN 2278-5612

1891 | P a g e A u g u s t 1 0 , 2 0 1 4

[11] Dan Laurenţiu Jişa , ―Component Based Development Techniques – comparison ,‖ International Conference on
Computer Systems and Technologies – CompSysTech,2004.

[12] B. Weide , "Reusable software components," Advances in computers, vol. 33, pp. 1-65, 1991

About Authors

 Richa Mittal received her three years polytechnic diploma from Thapar Polytechnic patiala. She

received her B.tech degree in Computer Science and Engineering from Thapar university patiala.
Currently she is persuing her degree for Master of Engineering (M.E) in Computer science and
Engineering from Thapar University,patiala,India. Her research interests include Software testing,
software engineering, software’s, software complexity, software components, Software reuse,
Software architecture, software process reengineering, and software metrics.

Ashima is Assistant Professor in computer science and Engineering department, Thapar University

, Patiala, India and pursuing Ph.D in computer Science from Bathinda , India(2001).she obtained
her Master of Technology degree in Computer science from Department of Computer science and
Engineering , Punjabi university Patiala India(2005).Her research interests include Software
Process Reengineering , Software engineering ,Agile Software Development, Software quality
improvement in small scale interprises, software Reuse, software Process customization and
Automation and software Process metrics.

