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ABSTRACT: We propose to compute the complexity metrics of component based software in more justified way by 

taking considerations of their using frequencies. The complexity metrics calculation of the component Based software’s by 
using black box testing is still not refined. The reason is that the various components are not used by the end users 
uniformly. Again, use of various components depends upon user to user as per their requirements. So therefore 
calculating straight forward their complexity on the basis of number of components, their interfaces and data types are not 
sufficient. We must add the factor of their (AUF) average use factor by the customers of different components. As we 
know that every algorithm or program have 3 complexity states i.e .  a) Best Case b) Average case and c) Worst case. As 
we know that each and every components of software is not used uniformly by the users. So calculating merely on the 
basis of their no of components, interfaces and data types predicts only theoretical complexity of that software. If we wish 
to calculate more justified complexity metrics then we must normalize these components on the basis of their frequency of 
use in normal routine. As it’s quite possible that some modules or components are rarely used by common users. In this 
case those components hardly influence the complexity of that software. Thus we can reduce significantly the complexity 
of component based software which was earlier hypothetically calculated very high.  

Keywords—AUF(Average Use Factor); Black box testing; STECC approaches; Logic component; I-BACCI Approach. 
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INTRODUCTION 

Component-based software development (CBD) is an emerging discipline that promises to take software engineering into 
a new era. Building on the achievements of object-oriented software construction, CBD aims to deliver software 
engineering from a cottage industry into an industrial age for Information Technology, wherein software can be assembled 
from components, in the manner that hardware systems are currently constructed from kits of parts. 

This volume provides a survey of the current state of CBD, as reflected by activities that have been taking place recently 
under the banner of CBD, with a view to giving pointers to future trends. The contributions report case studies — self-
contained, fixed-term investigations with a finite set of clearly defined objectives and measurable outcomes — on a 
sample of the myriad aspects of CBD. 

This paper includes chapters dealing with COTS (commercial off-the-shelf) components; methodologies for CBD; 
compositionality. We use case studies and complexity metrics formula and multiply it with the assumed usability factor 
points for each component to calculate the complexity. We can use the statistical techniques for the validity of results. The 
proposed algorithm can be implemented in any suitable programming language or Case Study. In this case those 
components hardly influence the complexity of that software. Thus we can reduce significantly the complexity of 
component based software which was earlier calculated very high. 

Proposed work: 

We use case studies and complexity metrics formula and multiply it with the assumed usability factor points for each 
component to calculate the complexity. We can use the statistical techniques for the validity of results. The proposed 
algorithm can be implemented in any suitable programming language or Case Study.  

CASE STUDY  

Microsoft Word 2007  

For component based Black box complexity calculation I choose a popular MS Office suit : 

Macro Components of MS Office 2007 : 

The following are the Major or Macro components of MS office 2007 : 

a) MS Access (For Database creation) 

b) MS Excel (For Accounting spreadsheet) 

c) MS Groove (File Sharing on Projects) 

d) MS Infopath (Designing Forms) 

e) MS One Note (Sharing Information ) 

f) MS Outlook (Email and Contacts) 

g) MS Power Point (For Presentation) 

h) MS Publisher (Edit news letter , Brochures ) 

i) MS Word (Word processor ) 

j) Digital Certificate for VBA Projects  

k) Microsoft Clip Organizer  

l) MS Language Setting  

m) MS office Designing  

n) MS Office Picture Manager  

Total Installed space Occupied: 523 MB  

MS Office Setup Size 562 MB  

On the basis of survey a common user use above different available MS office package as follows:  

Using Frequencies by average user (UF) 
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Table 1 

Sl 
No. 

Macro MS 
Office  S/W 

components 

Rarely 
Used 

Less 
Used 

Moderate 
Used 

Extensive 
Used 

Continuous  
Used 

1 MS Access 
(For 
Database 
creation) 

 .2    

2 MS Excel 
(For 
Accounting 
spreadsheet) 

    .5 

3 MS Groove 
(File Sharing 
on Projects) 

.1     

4 MS Infopath 
(Designing 
Forms) 

 .2    

5 MS One Note 
(Sharing 
Information ) 

.1     

6 MS Outlook 
(Email and 
Contacts) 

  .3   

7 MS Power 
Point (For 
Presentation) 

   .4  

8 MS Publisher 
(Edit news 
letter , 
Brochures ) 

 .2    

9 MS Word 
(Word 
processor ) 

    .5 

10 Digital 
Certificate for 
VBA Projects  

.1     

11 Microsoft Clip 
Organizer  

 .2    

12 MS 
Language 
Setting  

.1     

13 MS office 
Designing  

 .2    

14 MS Office 
Picture 
Manager  

   .4  

 Sum =3.5 .4 1.0 .3 .8 1.0 

 

Using Frequencies by average user (UF)= Sum/(.1+.2+.3+.4+.5)*14 

Or  3.5/(1.5)*14 Or, 3.5/21 = .16 

Memory Occupancy of Components: (MOC) 
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                                                             Table 2 

Sl 
No.  

Macr
o MS 
Offic
e  
S/W 
comp
onent
s  

Me
mor
y 

Occ
upa
ncy   

(MB
) 

Negli
gible 
Mem
ory 
Occu
panc
y  

Less 
Mem
ory 
Occu
panc
y 

Mode
rate 
Mem
ory 
Occu
panc
y 

Large 
Mem
ory 
Occu
panc
y 

Very 
Large  
Mem
ory 
Occu
panc
y 

1 MS 
Acces
s (For 
Datab
ase 
creati
on) 

28.3     .5 

2 MS 
Excel 
(For 
Acco
unting 
sprea
dshee
t) 

14.9   .3   

3 MS 
Groov
e 
(File 
Shari
ng on 
Proje
cts) 

4.30  .2    

4 MS 
Infop
ath 
(Desi
gning 
Form
s) 

5.2  .2    

5 MS 
One 
Note 
(Shari
ng 
Infor
matio
n ) 

31.1     .5 

6 MS 
Outlo
ok 
(Emai
l and 
Conta
cts) 

9.2  .2    
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7 MS 
Powe
r 
Point 
(For 
Prese
ntatio
n) 

14.4   .3   

8 MS 
Publis
her 
(Edit 
news 
letter 
, 
Broch
ures ) 

12.0   .3   

9 MS 
Word 
(Word 
proce
ssor ) 

16.2    .4  

10 Digita
l 
Certifi
cate 
for 
VBA 
Proje
cts  

2.4 .1     

11 Micro
soft 
Clip 
Orga
nizer  

3.2  .2    

12 MS 
Lang
uage 
Settin
g  

2.1 .1     

13 MS 
office 
Desig
ning  

8.3   .3   

14 MS 
Office 
Pictur
e 
Mana
ger  

8.5              .3   

 Sum
=4.3 

 .2 .8 1.5 .8 1.0 

 

Memory Occupancy of Components: (MOC)= Sum/(.1+.2+.3+.4+.5)*14 

Or MOC=4.3/21=0.2 

System Recourses Uses: (SRU) 
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Table 3 

Sl 
No.  

Macro MS 
Office  S/W 
components  

CPU 
Uses  

Graphics 
& 
Multimedia 
Uses 

Main 
Memory 
Uses  

Buffer 
memory 
uses 

Network 
uses 

1 MS Access 
(For 
Database 
creation) 

.5 .2 .3 .2 .1 

2 MS Excel 
(For 
Accounting 
spreadsheet) 

.5 .2 .3 .2 .2 

3 MS Groove 
(File Sharing 
on Projects) 

.2 .2 .2 .3 .3 

4 MS Infopath 
(Designing 
Forms) 

.2 .2 .1 .2 .1 

5 MS One 
Note 
(Sharing 
Information ) 

.2 .2 .3 .4 .5 

6 MS Outlook 
(Email and 
Contacts) 

.2 .2 .3 .2 .5 

7 MS Power 
Point (For 
Presentation) 

.3 .2 .3 .3 .2 

8 MS Publisher 
(Edit news 
letter , 
Brochures ) 

.2 .2 .3 .3 .2 

9 MS Word 
(Word 
processor ) 

.3 .3 .3 .4 .2 

10 Digital 
Certificate for 
VBA Projects  

.1 .1 .1 .1 .1 

11 Microsoft 
Clip 
Organizer  

.1 .2 .2 .2 .1 

12 MS 
Language 
Setting  

.1 .1 .1 .1 .1 

13 MS office 
Designing  

.2 .2 .3 .2 .2 

14 MS Office 
Picture 
Manager  

      .3      .2 .3 .3 .3 

 Sum=15.7 3.1 2.7 3.4 3.4 3.1 

 

Table Complexity = Sum/Max Weight age  

Or ,  15.7/(14*.5*5)=15.7/35=.44  

Volume of Software Components (VSC): 
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                                                               Table 4 

Sl 
No.  

Macro MS 
Office  S/W 
components  

Too 
Few  

Few  Moderate  Rich  Super 
Rich   

1 MS Access 
(For 
Database 
creation) 

    .5 

2 MS Excel 
(For 
Accounting 
spreadsheet) 

    .5 

3 MS Groove 
(File Sharing 
on Projects) 

 .2    

4 MS Infopath 
(Designing 
Forms) 

 .2    

5 MS One Note 
(Sharing 
Information ) 

.1     

6 MS Outlook 
(Email and 
Contacts) 

  .3   

7 MS Power 
Point (For 
Presentation) 

    .5 

8 MS Publisher 
(Edit news 
letter , 
Brochures ) 

   .4  

9 MS Word 
(Word 
processor ) 

    .5 

10 Digital 
Certificate for 
VBA Projects  

.1     

11 Microsoft Clip 
Organizer  

.1     

12 MS 
Language 
Setting  

.1     

13 MS office 
Designing  

  .3   

14 MS Office 
Picture 
Manager  

   .4  

 Sum=4.2 .4 .4 .6 .8 2.0 

 

System Recourses Uses: (SRU)= Sum/(.1+.2+.3+.4+.5)*14= 4.2 / 21=0.2 
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Table 5 

Cumulative Occupied Memory of Installed components (COM) 

S
l
 
N
o
.
  

 MS 
Offic
e 
Pack
age    

 

Total 
Mem
ory 

Occu
pancy   

(MB) 

Negligi
ble 
Memor
y 
Occup
ancy  

Les
s 
Me
mor
y 
Occ
upa
ncy 

Mode
rate 
Mem
ory 
Occu
pancy 

Large 
Mem
ory 
Occu
pancy 

Very 
Large  
Mem
ory 
Occu
pancy 

1 MS 
Office 
2007 

615 
MB  

   .4  

 

Cumulative Occupied Memory of Installed components (COM) =  

Weighted Memory Occupancy /.5 = .4/.5 = .8 

                       As we know that complexity depends primarily on following factors: 

1) Memory Occupied 

2) Execution time or Time to Live (TTL) 

3) Resourced uses  

4) Number of Components  

5) Using Frequencies of components 

6) DataType 

The first factor is static. As memory occupied is a static feature and  its not varies user to user .The second factor is 
variable user to user depending upon their habit and needs. 

However whatever the user’s age , education , need or habit to use a software package and its components ; a user can’t 
use all the components uniformly. Thus the execution of such components does not affect the system uniformly and thus 
we must made sufficient provision to reduce this theoretical complexity calculation. 

In the above table we can say that rarely used software components less affects the complexity of software as most of 
time they only occupies the memory of secondary storage which is available in abundant and not a critical resource . 

Complexity Calculation 

CCM(BBAU)= ∑(A+B+C+D+E)*E 

Or  CCM(BBAU)= ∑ (UF+MOC+SRU+VSC+COM) / N      

 Where the terms stands for  Using Component Complexity Metric Black Box Average Use(CCM(BBAU) , Frequencies  
(UF) , Memory Occupancy of Components: (MOC), System Recourses Uses: (SRU), Volume of Software Components 
(VSC) and Cumulative Occupied Memory of Installed components (COM). N= Number of Tables Used  

Weighted Complexity Calculation: WCCM(BB)=( .16+0.2+.44+0.2+.8)/N 

WCCM(BB)=1.80/5=0.36 

Therfore final computed complexity of components of MS office Suit by using black box method is 0.36 which is 
pretty good and falls within moderate complex software range .  

Micro Software Components of MS Office :  

MS Office is a jumbo software suit and contains huge number of micro components in each Macro component. Amongst 
them we choose MS Word which is extensively used amongst all macro components for case study . 

MS Word Software Components: 

MS word is the biggest bundle of software components available in the package. For simplification we choose some 
selected components amongst them for case study :  
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                                                                                      Table 6 

Microsoft Word Components  

Sl 
No.  

Components 
of MS Word  

Rarely 
Used  

Less 
Use  

Moderate  
Use  

Extensive 
Used 

Extremely 
Used  

1 Find and 
Replace 

 √    

2 Status bar     √ 

3 Menu Bar     √ 

4 Print    √   

5 Mail Merge  √    

6 Design   √    

7 Layout   √ √   

8 Table Tools  √    

9 Shapes      

10 Word Art    √   

11 Font     √  

12 Formatting     √  

13 Equation 
Editor 

√     

14 References √     

15 Edit     √  

16 Spelling and 
Grammar 

     

17 Help   √   

18 View     √  

19 Translate √     

20 Look Up √     

21 Hyperlink √     

22 Auto fit  √    

23 Page layout    √   

24 Symbols   √   

25 Workspace     √ 

26 Save / Save 
As  

    √ 
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We can use the same process for the micro software components for complexity computations in black box model.   

Advantage of WCCM(BBAU) over othe available available blackbox component based software complexity 
calculation methods:   

Advantage of WCCM(BBAU) Component Complexity Metric (Black Box Average Use method) is more realistic and 

simpler than all available complexity determining methods in black box methods. Its include the factor of Average Use 
factor which earlier ignored . This reduces significantly the complexity computation than others who calculates theoretically 
without considering end user requirement.  

CONCLUSIONS 

The earlier techniques ignores the usability factor of the different software components which are the most major aspect 
and varies user to user . We propose to compute the complexity metrics of component based software in more justified 
way by taking considerations of their using frequencies. The complexity metrics calculation of the component Based 
software’s by using black box testing is still not refined. The reason is that the various components are not used by the 
end users uniformly. Again, use of various components depends upon user to user as per their requirements. So therefore 
calculating straight forward their complexity on the basis of number of components, their interfaces and data types are not 
sufficient. We must add the factor of their average use by the customers of different components. As we know that every 
algorithm or program have 3 complexity states i.e .  a) Best Case b) Average case and c) Worst case. As we know that 
each and every components of software is not used uniformly by the users. So calculating merely on the basis of their no 
of components, interfaces and data types predicts only theoretical complexity of that software. If we wish to calculate more 
justified complexity metrics then we must normalize these components on the basis of their frequency of use in normal 
routine. As it’s quite possible that some modules or components are rarely used by common users. In this case those 
components hardly influence the complexity of that software. Thus we can reduce significantly the complexity of 
component based software which was earlier hypothetically calculated very high.  

Although the CBSD is increasingly being adopted for software development, because of its advantages like reduction in 
development effort, time and cost , increase in quality with many others. But it still consists of a number of issues or 
factors that affect many aspects of CBSD like integration and testing effort and affect the produced software cost, 
maintainability, quality etc Many of these factors or issues can be resolved by using the independent components or the 

components with low coupling. Thus a technique has been proposed for the component based software development 
organizations to be followed during the component based software development. Thus it will help in reducing the 
integration effort, testing effort, cost and providing the more maintainable and good quality software system. After adding 
the component using frequencies we can more justify the complexity metrics.  
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