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Abstract

The rapid growth of blockchain technologies has enabled decentralized applications based on smart contracts
and distributed consensus. However, the increasing number of attacks exploiting protocol logic and network
dynamics highlights the limitations of traditional, static security mechanisms. This study proposes an adaptive
cognitive security model based on a Q-learning agent to enhance the protection of blockchain protocols. The
agent is designed to analyze transaction behavior, assess risk levels, and dynamically select appropriate
countermeasures. The proposed approach is evaluated through a dual experimental framework combining
large-scale simulation using SimPy and execution on a private blockchain environment implemented with
Ganache. Experimental results show a detection rate of approximately 70%, no observed false positives, a
response time close to one second, and a very low operational gas cost. These results demonstrate that
reinforcement learning can effectively improve the adaptability and responsiveness of blockchain security
mechanisms while preserving network performance and economic viability. The study confirms the potential of
cognitive and adaptive approaches for building more resilient and autonomous blockchain security systems.

Keywords: blockchain security, Q-learning, cognitive agent, adaptive defense, anomaly detection.
Introduction

Blockchain technologies have significantly transformed distributed systems by enabling decentralized trust and
transaction integrity without relying on a trusted third party. Their increasing adoption in critical domains,
particularly decentralized finance (DeFi) applications, has nevertheless exposed new security vulnerabilities.
Attacks such as reentrancy, oracle manipulation, and flash loans demonstrate that blockchain security does not
rely solely on cryptographic mechanisms but also on dynamic behaviors that are difficult to anticipate.

Current security approaches largely depend on manual audits, static rules, or post-incident patches. While these
methods remain necessary, they show clear limitations when confronted with evolving and previously unknown
attacks whose patterns are not always documented in advance. This context highlights the need for defense
mechanisms capable of learning, adapting, and proactively responding to emerging threats without
compromising the fundamental properties of blockchain systems.

In this regard, artificial intelligence, and more specifically reinforcement learning, provides a promising
framework for enhancing the cybersecurity of distributed systems. By continuously observing network activity, a
cognitive agent can adapt its decision-making process based on accumulated experience. When integrated into
a blockchain protocol, such an agent can operate upstream of the consensus mechanism to analyze transactions
before irreversible validation.

This paper proposes an adaptive cognitive model based on Q-learning, positioned between the mempool and
the consensus process. The proposed approach aims to detect and mitigate abnormal behaviors in near real time
while preserving network performance and decentralization. The model is evaluated through a dual experimental
framework combining large-scale simulation and execution on a private Ethereum blockchain. The results
highlight the relevance of jointly integrating adaptive learning mechanisms and blockchain architectures to build
more autonomous and resilient security systems.

Materials and Methods

This study adopts an experimental methodology combining model design, large-scale simulation, and validation
on a private blockchain. The objective is to evaluate the ability of a Q-learning-based cognitive agent to detect
and mitigate abnormal behaviors in a blockchain environment while assessing its performance, responsiveness,
and operational cost.

1. System architecture

The proposed system integrates a cognitive module positioned between the mempool and the consensus
mechanism. This module acts as an analysis and decision layer capable of observing pending transactions,
assessing their risk level, and applying appropriate actions prior to irreversible validation.

The architecture consists of three main components:
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(i) a transaction data collection and analysis layer,
(i) a Q-learning-based cognitive module,
(i) an integration layer applying the agent'’s decisions to the consensus process.

The architecture is designed to enhance the blockchain's decision-making capabilities by monitoring and
analyzing transactions in real time, enabling the application of countermeasures before final validation. The
following figure (Figure 1) provides a visual representation of the general architecture of the adaptive cognitive
model, illustrating the key components involved in data collection, decision-making, and action processes.
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Figure 1: General architecture of the adaptive cognitive model integrated between the mempool and the
consensus.

2. State and action representation

Each observed transaction is modeled as a state composed of several indicators, including contract call type,
patterns associated with known attacks (reentrancy, oracle manipulation, flash loans), address behavior, and
network context (gas price).

The cognitive agent can select among several actions: accepting the transaction, placing it under observation,
isolating it for further analysis, or blocking it.

3. Reinforcement learning and Q-learning

Learning is based on the Q-learning algorithm, which enables the agent to estimate the value of actions
associated with each observed state. The decision policy is progressively updated according to received
rewards, which account for detection accuracy, false positives or negatives, response time, and gas cost.

The Q-learning algorithm updates the value of Q(s, a) as shown in the following central equation (Equation 1):

Qs Qs )+ alr + Y0(s,a) — Q)] )
Where:
e Qf(s, a): estimated value of taking action a in state s
e o (alpha): learning rate
e r:reward associated with the action (good detection, false positive, cost, etc.)
e vy (gamma): discount factor

e max: maximum Q value for the next state-action pair.
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4. Experimental environments
Two complementary environments are employed.

SimPy is used to rapidly simulate a large number of episodes and analyze the global behavior of the model at
scale.

Ganache, a private Ethereum blockchain, is used to evaluate the system under near-real conditions, particularly
in terms of latency and gas consumption.

(.venv) PS C:\xampp\htdocs\blockchain ai security\prototype> python main.py --r

Mode d'exécution: Simulation

---- ECHANTILLON D'EXECUTION (5 derniéres étapes) --
‘action': oler adresse', 'recompense’: 8.3, 'cout eth': 8.85, 'note': 'Address isolated locally: None'}
‘action’: ‘ajuster seuils', 'recompense': 0.0, 'cout eth': 0.61, 'note’': 'Threshold tightened -> 0.10'}
‘action’: 'rien', 'recompense’: 0.2, 'cout eth': ©.0, 'note’': 'Observation only.'}

‘action’: 'isoler adresse', 'recompense’: ©.2, it eth': 6.85, 'note’: 'Address isolated locally: None'}
s': 179.8, 'action’: ‘rien’, 'recompense’: .2, 'cout_eth': @.8, 'note’: 'Observation only.'}

---- RESUME

Mode: Simulation

Etapes: 179

Récompense moyenne: ©.227

ut total: 3.230000 ETH
mptage des actions: {'rien’': 89, ‘'alerte pairs': 9,

Figure 2: Execution of the prototype in simulation mode (SimPy). This figure provides a visual representation of
the simulation environment used to evaluate the performance of the cognitive agent in detecting abnormal
behaviors and assessing operational costs.

TERMINAL

) PS C:\xampp\htdocs\blockchain ai_ security\prototype> python main.py --d r = == data/run_ganache_180s.csv
B connexion a Ganache réussie
Mode d'exécution: Ganache
Solde initial: 99.8545 ETH
-—-- ECHANTILLON D'EXECUTION (5 derniéres é&tapes) ----
{'temps': 175.0, ‘acti er_adresse', 'recompense': 0.9, 'cout eth': ©.00042, 'gas used': 21000, 'note': 'Isolation simulée vers null; tx=8x93dal6ea75948fo822bafef
1199ae0996941640733af093ade9d6653db39ce8; gas used=21000; cost=0.00042000ETH'}
{'temps': 176.8, 'action': 'rien', 'recompens 0.3, 'cout eth': 0.8, 'gas used': @, 'note’: ‘Observation only'}
{'temps': 177.8, 'action': 'isoler adresse', 'recompense': 0.0, 'cout eth': ©.80042, 'gas used': 21000, 'note': 'Isolation simulée vers null; tx=@x5cdda33ab912c203749a7e5
T64f8d4a897e75ad84c816b41d468d15244e8d497; gas_used=21000; cost=0.00042000ETH"}
{'temps': 178.@, 'action': 'isoler adresse', 'recompense': ©.2, 'cout eth': ©.80042, 'gas used': 21000, 'note': 'Isolation simulée vers null; tx=0x42594b1e9309d35ca879a93
82e58782codffeac6d745846bbee93d88e43e123; gas used=21000; cost=0.00042000ETH"}
{'temps': 179.@, 'action': 'rien', 'recompense': @.2, 'cout eth': @.8, 'gas used': @, 'note': 'Observation only'}

Solde final: 99.8196 ETH
CoUt total: ©.834860 ETH

---- ANALYSE DES COUTS PAR ACTION ----

rien: 89 fois, colt total: ©.00000000 ETH, colt moyen: ©.00000000 ETH, gas total: @, gas moyen: @

isoler_adresse: 72 fois, colt total: ©.83024900 ETH, cout moyen: ©.00042000 ETH, gas total: 1512000, gas moyen: 21000
ajuster_seuils: 7 fois, cout total: ©.00000000 ETH, colt moyen: ©.00000000 ETH, gas total: @, gas moyen: @

alerte pairs: 11 fois, colt total: ©.08462000 ETH, colt moyen: ©.8004200@ ETH, gas total: 23100@, gas moyen: 21000

Etapes: 179

Récompense moyenne: ©.175
moyen: ©.00019475 ETH
total: ©.03486000 ETH

as total utilisé: 1743000

Gas moyen par transaction: 9737

Comptage des actions: {'rien': 89, 'isoler adresse': 72, 'ajuster_seuils': 7, 'alerte pairs': 11}
Blocs util: 1 84

CSV exporté vers : C:\xampp\htdocs\blockchain ai_security\prototype\data\run ganache 180s.csv

Figure 3: Execution of the prototype in real blockchain mode (Ganache). This figure illustrates the real blockchain
environment setup using Ganache, highlighting the integration of the cognitive agent for real-time
decision-making and transaction validation.
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ADDRESS BALANCE TX COUNT INDEX
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ADDRESS BALANCE TX COUNT INDEX
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Figure 4: Ganache environment setup for experimental evaluations. This figure shows the setup of the Ganache
environment, including the connection of accounts and the simulation of transactions on the private Ethereum
blockchain for real-world testing.

5. Data collection and evaluation metrics

All agent decisions are logged in CSV format. The evaluated metrics include detection rate, false positives and
false negatives, average response time, Q-table convergence, and operational gas cost. All scripts and generated
data enable full reproducibility of the experiments.

Results and Discussion

This section presents the experimental results obtained from simulation and private blockchain execution,
followed by a discussion analyzing the performance, robustness, and limitations of the proposed cognitive
model.

1. Overall model performance

The model was evaluated in two distinct environments: large-scale simulation with SimPy and execution on a
private Ethereum blockchain using Ganache.

Table 1 provides a comparison of the performance metrics, including detection rates, false positives, false
negatives, total cost, average cost, and average time, across the two execution modes. The table highlights the
differences in performance when the conditions are closer to a real-world blockchain environment.

Table 1: Comparison of performance metrics: SimPy vs Ganache

m&4'68'0"Baccount_index

&

S N Y Y

Mode Detection Rate False Positives False Negatives Total Cost Average Cost Average Time
(%) (%) (%) (ETH) (ETH) (s)

SimPy 65.69 0.0 33.89 5.69 0.0238 1.0

Ganache 70.39 0.0 29.05 0.0349 0.000195 1.0

The results show a detection rate of 65.69% in the simulation environment and 70.39% in the Ganache
environment. The improvement observed under near-real conditions suggests greater model stability when
execution constraints are closer to those of an operational blockchain network.

No false positives were observed in either environment, which is a critical requirement for maintaining trust in a
blockchain security system. However, false negatives remain relatively high (between 29% and 34%), indicating
that some attacks are still not automatically detected.

The average response time of the model is approximately one second, which is compatible with the time
constraints of fast-paced attacks commonly observed in DeFi environments, such as flash loans.
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Table 2 summarizes the robustness of the model's actions and results, comparing the performance of the
cognitive agent in terms of isolated nodes, threshold adjustments, and the number of anomalies stopped and
escaped in both the SimPy and Ganache environments. This comparison highlights the trade-off between cost
and performance efficiency.

Table 2: Synthesis of robustness (actions and results).

Environment

No. of Isolations

No. of Adjustments

Total Cost (ETH)

Anomalies Stopped

Anomalies Escaped

Ganache

72

7

0.03024

40

39

SimPy

107

8

543

50

65

(i) Cost-performance efficiency: Ganache achieves a better cost-performance ratio, with only 0.03024 ETH for
72 isolation actions compared to SimPy, which simulates a cost 180x higher. This demonstrates that Ganache is
far more efficient in terms of cost while maintaining similar performance in terms of anomaly detection.

(i) Anomalies stopped: SimPy stops more anomalies because it generates a larger number of transactions, which
is expected in a simulation environment. However, Ganache shows a better cost-effectiveness ratio, as it
requires fewer actions to stop similar anomalies, highlighting its operational efficiency.

(i) Anomalies escaped: Both environments show numerous anomalies escaping, confirming the presence of false
negatives, especially in complex scenarios where rapid adjustments are required.

2. Operational cost and economic feasibility

A key objective of this study was to assess the economic feasibility of embedding a cognitive agent within a
blockchain protocol. The results reveal a significant contrast between simulated and real execution costs.

While SimPy produces high estimated costs due to its abstract nature, execution on Ganache demonstrates an
extremely low real cost, with a total gas consumption of approximately 0.0349 ETH across all episodes. The
average cost per isolation action is below 0.001 ETH, confirming that the proposed approach can be deployed
without compromising the economic viability of the blockchain network.

3. Agent robustness and behavior

Analysis of the agent's actions indicates a predominance of address isolation decisions, combined with
occasional threshold adjustments. In the Ganache environment, the model exhibits a better cost-efficiency ratio
than in simulation, stopping a significant number of anomalies at a minimal operational cost.

However, some episodes reveal ineffective decisions, particularly when threshold adjustments fail to prevent
ongoing attacks. These behaviors partially explain the persistence of false negatives and highlight the need for
refining reward functions and expanding the action space.

4. Discussion and limitations

The results confirm that integrating a Q-learning-based cognitive agent can enhance blockchain protocol security
in a proactive manner while preserving performance and decentralization constraints. A detection rate close to
70%, zero false positives, and very low gas costs demonstrate the feasibility of the proposed approach.

Nevertheless, the remaining false negatives reveal limitations in the current model configuration. These
limitations are mainly related to the simplicity of the reward function and the tabular nature of Q-learning. More
advanced approaches, such as deep reinforcement learning, fuzzy logic, or federated learning, could further
improve threat anticipation and reduce undetected attacks.

Conclusions

This study investigated the integration of an adaptive cognitive agent based on Q-learning to enhance the
security of blockchain protocols. By positioning the proposed module between the mempool and the consensus
mechanism, the system introduces a proactive defense layer capable of analyzing transactions before irreversible
validation.

The experimental evaluation, conducted through large-scale simulation and execution on a private Ethereum
blockchain, demonstrates that the proposed approach can effectively detect abnormal behaviors while
preserving network performance. The absence of false positives, a response time of approximately one second,
and a very low operational gas cost confirm the practical feasibility of embedding a learning-based security
mechanism within a blockchain environment.

Beyond performance considerations, this work highlights the relevance of combining reinforcement learning with
blockchain architectures to address the dynamic nature of emerging threats, particularly in decentralized finance
applications. While the current model achieves promising detection capabilities, the presence of false negatives
indicates that further refinements are necessary to improve threat anticipation and decision accuracy.
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Future work will focus on enhancing the learning strategy through more advanced reinforcement learning
techniques, refining reward functions, and extending the model toward distributed and multi-agent
implementations. The proposed framework also opens perspectives for application in other critical distributed
systems, such as Internet of Things networks and decentralized infrastructures, where adaptive and autonomous
security mechanisms are increasingly required.

Data Availability (excluding Review articles)

The data supporting the findings of this study were generated through controlled experiments conducted using
simulation and a private Ethereum blockchain environment. All experimental data, including execution logs,
performance metrics, and learning outputs, were automatically recorded during the experiments and stored in
CSV format.

The complete source code of the proposed cognitive security model, including the Q-learning agent, simulation
scripts (SimPy), smart contracts deployed on the private blockchain (Ganache), data analysis scripts, and raw
experimental datasets, is publicly available to ensure full reproducibility of the results.

The repository also provides documentation describing the experimental setup and instructions for reproducing
the simulations and blockchain-based evaluations.

All materials are accessible at the following public repository:
| J/githul /Fenitra07/blockchain _ai it
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Supplementary Materials

Supplementary materials associated with this study include the source code of the proposed cognitive security
model, simulation scripts, smart contracts deployed on a private Ethereum blockchain, and experimental
datasets generated during the evaluation.

These materials provide additional technical details that support the reproducibility of the experiments and the
validation of the reported results. The complete supplementary material is provided as a compressed archive and
is publicly accessible through the project repository referenced in the Data Availability section.
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