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Abstract The new focus of cryptographic research is on encryption schemes that can withstand cyber-attacks, with
the arrival of cloud computing. The widely used public key encryption system designed by Taher El Gamal based on
the discrete logarithm problem has been used in many sectors such as internet security, E-voting systems, and other
applications for a long time. However, considering the potential data security threats in cloud computing, cryptologists
are developing new and more robust cryptographic algorithms. To this end, a new robust homomorphic encryption
scheme based on Paillier, Residue Number system (RNS), and El Gamal (PRE), is proposed in this paper., which
is expected to be highly effective and resistant to cyber-attacks. The proposed scheme is composed a three-layer
encryption and a three-layer decryption processes thereby, making it robust. It employs an existing RNS moduli set
{2n + 1, 2n, 2n − 1, 2n−1 − 1}, having passed it through the Paillier encryption process for forward conversion and then
the El Gamal cryptosystem to encrpyt any data. The decryption process is a reversal of these processes starting from
the El Gamal through a reverse conversion with the same moduli set using the Chinese Remainder Theorem (CRT).
The simulation results shows that the proposed scheme outperforms similar existing schemes in terms of robustness
and therefore, making it more secured which however, trades off with the time of execution in similar comparison.
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1 Introduction

The world has to brace itself for the effects of cloud computing as it is finally here with its advantages and disadvantages.
It is believed that cloud computing has revolutionize the computational speed and efficiency of modern-day computers
which could likely lead to serious security bridges. Cloud computing is a model for enabling quick provisioning and
release of customised and dependable computing resources through a shared network (Michael Kavis, 2014). Also,
according to (Thabit, Can, Alhomdy, Al-Gaphari, & Jagtap, 2022), cloud computing is a technological framework
where computing services encompassing storage, processing power, databases, networking, analytics, software, and
intelligence are provided over the Internet. There is no contradiction that technological advancements, especially in
electronic communications, have played a crucial role in shaping the modern age. As the importance of preserving data
confidentiality, integrity, authenticity, and non-repudiation in its transmission and storage becomes increasingly vital,
cryptography has emerged as a crucial discipline within the field of information technology (Koundinya & Gautham,
2021). Therefore, researchers continue toleverage on various encryption techniques such as Paillier, RSA, ECC, etc.
with other techniques for securing data in the cloud (Hodowu, Korda, & Ansong, 2020).

Encryption is a process of ensuring that information is protected from unwanted and unauthorized access. The Residue
Number System (RNS) represents numbers in residues by decomposing large integers as a vector of remainders of a
given moduli such that the greatest common divisor (gcd) of any two pairwise moduli does not exceed one. The choice
of the moduli set coupled with the certain inherent properties of RNS such as parallelism, fault tolerance, modularity
in particular make RNS suitable for implementation in chaotic processes such as encryption. (Baagyere, Agbedemnab,
Qin, Daabo, & Qin, 2020). For simplicity, given a set of relatively prime moduli S = {m1,m2, . . . . . . .mn}, such that
the greatest common divisor (gcd) between any pair is one, i.e. gcd(mi,mj) = 1, for i ̸= j. We can compute M =

∏n
i=1,

where S and M are the base and the dynamic range of the RNS respectively. Now any number X which is less than
M has a unique representation within the dynamic range as a vector X = x1, x2, . . . . . . .xn, where xi = |X|mi

, and is
referred to as the forward conversion. The reverse conversion is the process of getting back to the weighted binary or
decimal number through a laborious process either using the Chinese Remainder Theorem (CRT) or the Mixed Radix

30



International Journal of Computer and Technology Vol 24 (2024) ISSN:2277-3061 https://rajpub.com/index.php/ijct

Conversion which are the traditional techniques for performing reverse conversion in RNS. The CRT is computed as
(Agbedemnab, Baagyere, & Daabo, 2019); ∣∣∣∣∣

N∑
i=1

mi|xiai|mi

∣∣∣∣∣
M

(i)

where,

M =

N∏
i=1

mi; ai =
M

mi
; |xi.ai|mi

= 1

The Paillier cryptosystem is a partial homomorphic encryption scheme which was invented by Pascal Paillier in 1999
and allows two types of computation: addition of two ciphertexts and multiplication of a ciphertext by a plaintext
number, (Suryavanshi, Alnajdi, Alhajeri, FahimAbdullah, & Christofides, 2023). The El Gamal cryptosystem on the
other hand, is an asymmetric cryptosystem which uses public keys to encrypt messages/data and communicate between
two parties. El Gamal is popular because of the difficulty of its discrete logarithm problem. That is, in a cyclic group
that is even if we know ga and gk, it is extremely difficult to compute gak. This makes it a suitable choice for robust
encryption schemes, (Chokparova & Urbas, 2022).

The increasing use of cloud computing services has resulted in the accumulation of enormous quantities of sensitive data
in the cloud. Data security remains a notable issue since unauthorized data access could result in severe repercussions.
With the emergence of cloud computing, there is a need for a more robust and efficient approach to data security
in cloud computing (Lenstra & Verheul, 2001). The current state of homomorphic encryption systems, particularly
the Paillier encryption system, is plagued by numerous limitations, such as unauthorized access which could lead to
potential security breaches, as outlined by (Koundinya & Gautham, 2021). It has been proved by (Asiedu & Salifu,
2022) that, the Paillier Cryptosystem can be compromised through various mathematical attacks without the need
to either address its security assumption related to Decisional Composite Residuosity (DCRA) or utilize its private
key parameters. Meanwhile, research exploring the synergies between Paillier, RNS, and El-Gamal Cryptosystems to
enhance data security in data transmission and storage, especially in the era of cloud computing, remains scarce. It
appears little, or no work is done to unfold how Paillier, RNS, and El-Gamal Cryptosystems can be used to enhance
data security, during data transmission and storage. This paper therefore, seeks to present an encryption system that
can ensure data integrity, confidentiality, and authentication in cloud systems using Paillier and El Gamal crytosystems,
and the RNS. The rest of the paper is structured as follows: Section 2 presents the struture and algorithmic flow of the
proposed scheme with numerical illustrations in Section 3. The performance of the proposed scheme is evaluated based
on standard metrics in Section 4 with comparisons to existing similar schemes and finally concludes in Section 5.

2 The Proposed Scheme

The proposed cryptosystem is a new robust three-layer encryption scheme which is a hybrid of the Paillier, RNS, and
El Gamal (PRE) cryptosystems. The Paillier cryptosystem is used to encrypt the plaintext using the usual Paillier
encryption process which is then converted into its residues through an RNS forward conversion process while the El
Gamal encryption process is used to encrypt the resulting RNS residues. The cryptosystem was implemented using
Python and on a 64-bit operating system, an x64-based processor, and an Intel(R) Core (TM) i5-4310M CPU @
2.70GHz with 8.00 GB RAM. Next, is a demonstration of the steps involved in the implementation:
We begin with a psuedocode for the proposed scheme as shown in Algorithm 1.

The proposed cryptosystem is a hybrid of Paillier, RNS, and El Gamal cryptosystem and uses the RNS moduli
set {2n + 1, 2n, 2n˘1, 2(n−1)˘1},that was proposed by (Cao, Srikanthan, & Chang, 2005; Schoinianakis, 2020). The
cryptosystem is divided into three parts: key generation, encryption, and decryption processes. The encryption process
encodes and transforms plaintext into a Paillier cipher-text which is converted to its RNS equivalent residues, and
it is further encrypted using the El Gamal cryptosystem. This helps thicken the encryption layer hence protecting
the plaintext from various forms of attacks. On the other hand, the decryption process transforms and decodes an El
Gamal cipher-text back into its plain form i.e. the residues that are converted back to the Paillier cipher-text using the
CRT reverse conversion process and the final plain text is gotten by applying the Paillier decryption process.

The detailed processes are:
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Algorithm 1 Psuedocode for the Proposed Cryptosystem
1: The proposed methods and strategies used to develop the encryption algorithm were implemented using the Paillier,

RNS, and El Gamal algorithms.The moduli set used for the RNS representation is {2n + 1, 2n, 2n − 1, 2n−1 − 1}.
2: procedure EncodeData(Paillier Algorithm)
3: Data was encoded first using the Paillier algorithm.
4: The Paillier-encoded data was then encrypted again using the RNS algorithm, which simplified large numbers

into small ones for faster processing.
5: The RNS-encoded data was then encrypted again using the El Gamal algorithm, providing an added layer of

security.
6: The encrypted data will then be stored in the cloud or transmitted.
7: When data is required, it will be decrypted using the reverse process.
8: The El Gamal decryption is done first, followed by the RNS decryption (reverse conversion) and the Paillier

decryption.
9: end procedure

I. Key Generation:
1: Generate two large prime numbers p and q such that gcd(pq, (p− 1)(q − 1)) = 1.
2: Calculate n = pq and λ = lcm(p− 1, q − 1), where lcm denotes the least common multiple.
3: Choose a random integer g such that gλ mod n2 = 1.
4: Encode the plaintext message m as an integer value in the range [0, n− 1].
5: Choose a random integer r in the range [1, n− 1].
6: Calculate the values of µ and λ as follows:

µ =
(
L(gλ mod n2)

)−1
(ii)

7: Choose n distinct even numbers.
8: Compute Keys = (m1,m2,m3,m4) =

(2n + 1, 2n, 2n − 1, 2n−1 − 1) respectively.
9: Since the keys generated are co-prime, the dynamic range is given as M = m1 ·m2 ·m3 ·m4.

10: Hence DR = [0,M − 1].
11: Choose a cyclic group G of order q and a generator g of G.
12: Let x be a randomly chosen integer in the range 1 ≤ x ≤ q − 1.
13: The public key is (G, g, h) where h = gx mod q, and the private key is x.

II. Encryption Process:
1: Compute the ciphertext c1 as follows:

c1 = gm · rn mod n2 (iii)

2: The resulting ciphertext c1 is further encrypted using RNS forward conversion.
3: RNS = (|Cn|m1

, |Cn|m2
, |Cn|m3

, |Cn|m4
).

4: Encrypt all the RNS residues ∈c2, using the usual Elgamal encryption process.
5: To encrypt the residues r1, r2, r3, r4 ∈ c2, choose a random integer k in the range 1 ≤ k ≤ q − 1.
6: Compute the ciphertext as shown in eqn 2.7:

Ca = gk mod q (iv)

Enc(r1) = Cr1 = r1 · Ck
a mod q,

Enc(r2) = Cr2 = r2 · Ck
a mod q,

Enc(r3) = Cr3 = r3 · Ck
a mod q,

Enc(r4) = Cr4 = r4 · Ck
a mod q.

7: The resulting ciphertext is
([Ca, Cr1 ], Ca, Cr2 ], [Ca, Cr3 ], [Ca, Cr4 ]), which is then transmitted.

III. Decryption Process:
1: To decrypt the ciphertext
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([Ca, Cr1 ], [Ca, Cr2 ], [Ca, Cr3 ], [Ca, Cr4 ]), compute the plaintext as:

pr1 = Cr1 · (Cx
a )

−1 mod q = r1,

pr2 = Cr2 · (Cx
a )

−1 mod q = r2,

pr3 = Cr3 · (Cx
a )

−1 mod q = r3,

pr4 = Cr4 · (Cx
a )

−1 mod q = r4,

2: The resulting plaintext is prn = (r1, r2, r3, r4).
3: Use the reverse Chinese Remainder Theorem (CRT) to combine the residues ∈c2 into a single decimal X.
4: That is, compute X as:

(r1M1 ·M−1
1 + r2M2 ·M−1

2 + r3M3 ·M−1
3 + r4M4 ·M−1

4 ) mod M (v)

5: The resulting plaintext message is c1 = X mod M . c1 is further decrypted using the usual Paillier decryption
process, which is given as:

6:
m = L(cλ mod n2) · µ mod n (vi)

2.1 Structure of the Proposed Cryptosystem

Figure 1 points is a block diagram that shows the main components of the structure of the proposed cryptosystem. As
has been indicated earlier, the whole structure is divided into three modules: Key generation, Encryption process,and
Decryption process. The following blocks of psuedocodes presented as algorithms 2, 3 and 4 further describe each of
the modules in detail.

Figure 1: Proposed Cryptosystem

Algorithm 2 Key Generation
1: PK: Choose large prime numbers p and q such that the prime numbers are not equal
2: Compute n = p · q
3: Compute λ = lcm(p− 1, q − 1)
4: Choose an integer g such that gλ mod n2 = 1
5: Encode the plaintext message m as an integer value in the range [0, n˘1]
6: Choose a random integer r in the range [1, n˘1]
7: RK: Choose n distinct even numbers. Compute Keys = {m1,m2,m3,m4} = {2n + 1, 2n, 2n˘1, 2(n−1)˘1}: the DR

> the Paillier encrypted value
8: EK: Choose a cyclic group G of order q and a generator g of G
9: Generate Epubkey (G, g, h): h = gx mod q, and Eprivtkey is x, a randomly chosen integer in the range

1 ≤ x ≤ q − 1
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Algorithm 3 Pallier-RNS-El Gamal Encryption
Require: Plaintext (Ptxt)

ASCII values ← [Ptxt]
2: Compute C1 = PallierEnc(Xn) ▷ Encryption Process

PCiphertext: mi← C1
4: Get (C1): mi and choose n ∈M ; M is the dynamic range

Compute C2 = (|C1|m1 , |C1|m2 , |C1|m3 , |C1|m4)
6: RCiphertext: (r1, r2, r3, r4)← C2

Gen Epubkey []: Random Prime Number generator
8: Get (RCiphertext, Epubkey) for i = 1 to n in C2 do

end
Gen random K

10: Compute Ca = gk mod q
Encrypt the residues in C2 as Cri = ri · Ca mod q

12:
ECiphertext: Unicode ([(Ca, Cr1), (Ca, Cr2) . . . (Ca, Crn)])

Algorithm 4 Pallier-RNS-El Gamal Decryption
Require: Decode ECiphertext, Eprivtkey for i = 1 to n do

end
Prn = Cr1 · Cx−1

a
mod q = rn

3: C2 RNS residues state: C2 = (r1, r2, r3, r4)
▷ RNS reverse Process

Get (C2, N)
6: Input: Compute CRT_inverse = |M ·M−1|mn = 1

Output: C1 = (r1 ·M1 ·M1−1 + r2 ·M2 ·M2
−1 + r3 ·M3 ·M3

−1 + r4 ·M4 ·M−1
4 )%M

9: Pallier Decryption process
Get (C1, Pprivtkey)
Xn = Dec(C1)

12: Input: ASCII values (Xn)
ASCII values ← [(Ptxt)]
Output: plaintext (Ptxt) =0

3 Numerical Illustrations

Next, we present some numerical examples in order to demonstrate and validate the performance and efficiency and/or
usability of the proposed scheme. For example, consider the moduli set {17, 16, 15, 7} and n = pq = 143, then

I. Key Generation

a. Paillier Keys:Generate two large prime numbers p and q such that gcd(13 ∗ 11, (13− 1)(11− 1)) = 1.
Calculate n = pq = 143,n2 = 20449 and λ = lcm(13 − 1, 11 − 1), Choose a random integer g such that
gλ mod n2 = 1. Let g = 37, Encode the plaintext message m as an integer value in the range [0, n − 1]. Let
m = 43, Choose a random integer r in the range [1, n− 1]; also, let r = 35.

b. RNS Keys: Choose n = 4 distinct even numbers. Compute Keys = (m1,m2,m3,m4) = (24 + 1, 24, 24 − 1, 24−1 − 1)
respectively; which implies that Keys = {m1,m2,m3,m4} = {17, 16, 15, 7}. Since the keys generated are co-prime,
the dynamic range is give as: M = 17× 16× 15× 7, therefore, the legitimate representation range is [0, 28560− 1]

c. Elgamal Keys: Choose a cyclic group G of order q = 13 and a generator 2 of G. Let x = 3 be a randomly chosen
integer in the 1 ≤ 3 ≤ 19− 1 range. The public key is (19, 2, 8) where h = 23 mod 19 = 8, and the private key is 3.

II. Encryption process
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a. Paillier Encryption process: Compute the ciphertext c1 as follows:

c1 = 3743 · 35143 mod 1432c1 = 10445 (vii)

b. RNS forward conversion (Encryption) process: The resulting ciphertext c1 = 10445 is further encrypted using
the proposed RNS conversion. To encrypt a plaintext message c1, first represent it as a pair of residues
RNS(|10445|17, |10445|16, |10445|15, |10445|7). Therefore the resulting second ciphertext is the residues computed
c2 = (r1, r2, r3, r4) = (7, 13, 5, 1) which is further encrypted using the usual Elgamal encryption process.

c. Elgamal Encryption process: Encrypt all the RNS residues ∈c2,use the usual Elgamal encryption process.To
encrypt the message r1, r2, r3, r4 ∈ c2, choose a random integer 7 in the range 1 ≤ 7 ≤ 19 − 1. Compute the
ciphertext as:(ciphertextA) Ca = 27 mod 19 = 14,

Enc(r1)= Cr1 = 7 ∗ 87 mod 19 = 18,
Enc(r2)= Cr2 = 13 ∗ 87 mod 19 = 9,
Enc(r3)= Cr3 = 5 ∗ 87 mod 19 = 2,
Enc(r4)= Cr4 = 1 ∗ 87 mod 19 = 8.

The resulting ciphertext is [(14, 18), (14, 18)(14, 9)(14, 2)(14, 8)]. which is then transmitted.

III. Decryption process

c. El gamal Decryption process:To decrypt the ciphertext (Ca, Cr1 , Cr2 , Cr3 , Cr4) = (14, 18, 9, 2, 8), compute:(plaintext)
pr1 = 18 ∗ (143)−1 mod 19 where (14x)−1 denotes the modular multiplicative inverse of 143 modulo 19 =
12.Hence,pr1 = 18 ∗ 12 mod 19 = 7,pr2 = 9 ∗ 12 mod 19 = 13,pr3 = 2 ∗ 12 mod 19 = 5,pr4 = 8 ∗ 12 mod 19 = 1,the
resulting plaintext is prn = (7, 13, 5, 1).

b. RNS reverse conversion(Decryption) process:To convert the residues ∈c2 to the paillier ciphertext,Use the reverse
Chinese Remainder Theorem (CRT) to combine the residues ∈ c2 into a single decimal X:

X = (7 · 1680 · 11 + 13 · 1785 · 9 + 5 · 1904 · 14 + 1 · 4080 · 6) mod 28560 (viii)

where M−1
1 ,M−1

2 ,M−1
3 and M−1

4 are the modular multiplicative inverses of M1 modulo m1, M2 modulo m2, M3

modulo m3 and M4 modulo m4 respectively. The resulting plaintext message is c1 = X mod M . c1 is further
decrypted using the usual paillier decryption process.

a. Paillier Decryption process: Calculate the values of µ and λ as follows:

µ = (L(3760 mod 1432))−1 = 125 (ix )

where, L(µ) = µ−1
n

λ = lcm(13− 1, 11− 1) = 60 (x )

,where φ(143) is Euler’s totient function. Calculate the plaintext message m as follows:

m = L(1044560 mod 1432) · 125 mod 143 (xi)

where, L(12156) = 12156−1
143 = 85.

The decrypted message is m = 43 and the resulting plaintext message is ’+’.

4 Performance Evaluation

The simulated results of the proposed scheme was evaluated using standard metrics such as the cipher uniqueness
test, the runtime, key sensitivity, and throughput rate. In order to evaluate its contribution, it was also compared
with similar best-known state-of-the-art cryptosystems. The analysis from tables 3, 4, and 6 shows that the proposed
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cryptosystem has higher encryption and decryption runtimes, and lower throughput compared to that in (Asiedu &
Salifu, 2022) and (Koundinya & Gautham, 2021). Though the proposed cryptosystem has a higher runtime than that
in (Asiedu & Salifu, 2022) and (Koundinya & Gautham, 2021), the proposed cryptosystem has an additional layer of
encryption which thickens the encryption cryptosystem. Thus the proposed cryptosystem uses three encryption layers
whilst the cryptosystems by (Asiedu & Salifu, 2022) and (Koundinya & Gautham, 2021) use two encryption layers.

4.1 Cipher Uniqueness Test

Table 1: Cipher Uniqueness Text
ASCII Pallier cipher Final Cipher text

43 10445 [[(79531,412876),(79531,517657),(79531,377949),(79531,308095)]]
43 10445 [[(370100,26750),(370100,124203),(370100,168156),(370100,450968)]]
65 6014 [[(443818,610426),(443818,793134),(443818,793134),(443818,182708)]]
65 6014 [[(104485,72858),(104485,61186),(104485, 61186), (104485, 100625)]]

In Table 1, the unique cipher text is generated depending on the random value generated which, results in different
cipher text, but the plaintext returned is always the same as the text that was encrypted. The encrypted messages are
+, +, A, and A. It was observed that as the Paillier cipher text increases, only schemes with the RNS turn to give the
right text since the RNS encrypted is always less than the selected prime number in the El Gamal encryption process.

4.2 Runtime Measurement

We analysed the time taken for our PRE scheme to produce an output. In the analysis, we used n = 4, k = 7, P =
11, q = 13 and simulated several times in order to record the average encrytion and decryption runtime. The results of
this measure is presented in Table 2 as well as Fig. 2. The results reveal that, encryption and decryption times increase
as the number of elements and/or the number of iterations increase. Thus, ’Hello’ text with 5 letters and a single
iteration requires 1.070000 microseconds for encryption and 1.300000 microseconds for decryption. This would change
if the size of the text or the number of iterations changed. For instance, if the number of text increases to 96, the total
encryption and decryption times for the Text are 2.000000 microseconds and 3.870000 microseconds respectively. This
gives an average time of 100 times the single text. For example, if the number of iterations increases to 100, the total
encryption and decryption times for the ’Hello’ Text are 14.832 microseconds and 13.251700 microseconds respectively.
This gives an average time of 100 times the single iteration. It is evident from Table 2 and Fig. 2, that the encryption
runtime keeps increasing as the input length increases while it takes less time to decrypt the encrypted text back to the
original text.

Table 2: Encryption and Decryption Runtime of the PRE system
Text Length Text Encryption Time (ms) Decryption Time (ms)

11 Hello world 0.000518 0.000300
16 Zeinab is my mom 0.000724 0.000450
25 Jumping foxes vex

bad dogs
0.001127 0.000689

29 God bless our home-
land Ghana.

0.00132 0.0007188

The encryption runtime was juxtaposed with two scenarios where running Paillier with RNS (PR) only and Paillier
with El Gamal (PE) only presented by (Asiedu & Salifu, 2022) and (Koundinya & Gautham, 2021) respectively. This
is shown in Table 3.

From Table 3 and Fig. 3, it is clear that the three-layer encryption scheme is a bit slower for encryption because of the
extra layer of security it possesses.The PE cryptosystem followed closely behind. It turned out that the PR scheme
performed faster than the other. This can be as a result of the utilisation of residues i.e. smaller numbers. Similarly as
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Figure 2: Runtimes

Table 3: Encryption Runtimes
Text-length Text Cryptosystem Encryption time

PRE PR PE
11 Hello world 0.000518 0.000078 0.000148
16 Zeinab is my mom 0.000724 0.000109 0.000207
25 Jumping foxes vex

bad dogs
0.001127 0.000169 0.000335

29 God bless our home-
land Ghana.

0.00132 0.0003417 0.0006518

34 Tomorrow is cer-
tainly not certain.

0.001517 0.000220 0.000722

shown in Table 4 and Fig. 4, the proposed PRE is slower to decrypt as a result of the extra layer. Notwithstanding,
this extra layer makes the proposed PRE very robust.

4.3 Key sensitivity process

The sensitivity of the encryption system’s key parameters was investigated by varying the ”g” value in the Paillier
public key and the ”y” value in the ElGamal public key while keeping other parameters constant. The study used
specific values for parameters such as p, q, n, P,G, y,λ, µ, N and, x. The results of these variations were observed and
recorded in Table 5.
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Figure 3: Encryption Runtimes

Table 4: Decryption Runtimes
Text-length Text Cryptosystem Decryption time

PRE PR PE
11 Hello world 0.000300 0.000144 0.000086
16 Zeinab is my mom 0.000450 0.000265 0.000114
25 Jumping foxes vex

bad dogs
0.000689 0.000311 0.000222

29 God bless our home-
land Ghana.

0.0007188 0.0003496 0.0001893

34 Tomorrow is cer-
tainly not certain.

0.000882 0.000454 0.000187

Table 5: Key Sensitivity Analysis
S no. Plaintext Cryptosystem keys Decrypted text Results

g = n+ 1 y = pow(G,X,P )
1 43 144 393581 43 True
2 63 144 393581 63 True
3 65 144 393581 65 True
4 43 198 393580 12 False
5 63 198 393580 133 False
6 65 897 393580 66 False
7 43 144 7984580 68 False
8 63 144 7984580 39 False
9 65 144 7984580 119 False

4.4 Throughput Evaluation

Throughput, also known as data transfer rate, is calculated by dividing the total size of the encrypted plaintext by the
time taken to complete the encryption process. A greater throughput value indicates improved performance.

Throughput =
Data Size

Processing Time
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Figure 4: Decryption Runtimes

Where the data size is typically measured in bytes.

Table 6: Comparison of the throughput of the various Cryptosystems
Cryptosystem Text size (byte) Encryption

Time(s)
Throughput(bps)

PRE 60, 69, 82,99 0.000551, 0.001221,
0.001453,0.002491

108893, 56511 , 56435, 39743

PR 60, 69, 82,99 0.000174, 0.000166,
0.000311,0.000685

345224 , 414663 , 263327 , 144610

PE 60, 69, 82,99 0.000223, 0.000413,
0.000629,0.001070

269058,166989, 130324 , 92541
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Figure 5: Comparison of the Throughput

5 Conclusions

This paper presented a new robust hybrid encryption scheme based on the Paillier, RNS, and El Gamal cryptosystems,
a PRE cryptosystem. It has been demonstrated that the approach enhanced security against brute force and known
plaintext attacks, overcoming some of the limitations in the conventional methods as a result of the additional layer.
The proposed scheme should therefore, be a best choice in instances where robustness is preferred. The encryption and
decryption runtime can be improved in future works.
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