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Abstract

Sleep is a necessary process that individuals undergo daily for physical recovery, and the proportion of deep sleep
in the sleep stages is a critical aspect of the recovery process. Convolutional Neural Networks (CNNs) have shown
remarkable success in automatically identifying deep sleep stages through the analysis of electroencephalogram (EEG)
signals. This article introduces three data augmentation techniques, including time shifting, amplitude scaling and
noise addition, to enhance the diversity and features of the data. These techniques aim to enable machine learning
models to extract features from various aspects of sleep EEG data, thus improving the model’s accuracy. Three deep
learning models are introduced, namely DeepConvNet, ShallowConvNet and EEGNet, for the identification of deep
sleep. To evaluate the proposed methods, the Sleep-EDF public dataset was utilized. Experimental results demonstrate
that the enhanced dataset formed by applying the three data augmentation techniques achieved higher accuracy in
all deep learning models compared to the original dataset. This highlights the feasibility and effectiveness of these
methods in deep sleep detection.
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Introduction

Sleep is a key element in maintaining human health, with its quality having a profound impact on our overall well-being
(Cirelli & Tononi, 2008). As modern life accelerates, lifestyle changes significantly disrupt regular sleep patterns, leading
to various sleep disorders that severely affect societal safety and economic development (Ohayon, 2002). Adequate and
high-quality sleep is crucial for strengthening the immune system and disease resistance. It also plays a significant role
in enhancing memory, improving attention and boosting decision-making abilities (Barnes et al., 2015).

Electroencephalography (EEG) is a non-invasive method for tracking and studying the electrical activity in the brain
(Niedermeyer & da Silva, 2005). This process involves placing electrodes on the scalp to measure and record the
electrical signals emitted by neurons in the EEG. Compared to other methods such as functional magnetic resonance
imaging (fMRI), computed tomography (CT), and positron emission tomography (PET), EEG offers advantages in
terms of high temporal and spatial resolution, non-invasiveness, real-time monitoring and a wider range of applications
(Michel & Murray, 2012). Therefore, EEG has become the most commonly used clinical diagnostic method for brain
disorders, involving the recording of electrical activity to analyze brain function, and it is also utilized to aid in the
diagnosis of sleep disorders (Li & Cao, 2023).

The classification and understanding of sleep stages rely heavily on the analysis of EEG frequency bands. Sleep
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is generally composed of two main stages: Rapid Eye Movement (REM) and Non-Rapid Eye Movement (NREM).
According to the definition by the American Academy of Sleep Medicine (AASM) (Iber, 2007), NREM sleep is divided
into three stages: Stage 1 (N1), associated with the θ wave band (4-8Hz), marks the onset of light sleep, characterized
by a slowing down of muscle activity and increased ease of waking (Carskadon, Dement, et al., 2005); Stage 2 (N2),
characterized by sleep spindles (12-15 Hz) and K-complexes, indicating progressively deeper sleep (De Gennaro &
Ferrara, 2003); Stage 3 (N3), also known as Slow Wave Sleep (SWS), is dominated by δ waves (0-4Hz), representing
deep sleep, a crucial period for tissue repair and memory consolidation (Stickgold, 2005). The REM sleep stage is
characterized by low-amplitude, high-frequency mixed-frequency waves, similar to the β band (13-30Hz) and Gamma
band (above 30Hz), during which brain activity resembles that of wakefulness, accompanied by rapid eye movements
and dreaming (Hobson & Pace-Schott, 2002). The examples of EEG signals with a 30-second epoch of each sleep stage
are shown in Fig. 1.

Fig. 1. Examples of EEG Data with a 30 seconds epoch of each sleep stages including Wake, N1, N2, N3 and REM.

Deep sleep, also known as Slow Wave Sleep (SWS), primarily occurs during the third stage of NREM sleep, accounting
for about 20-25% of total sleep time in adults ((JSSR): et al., 2001). It represents a sleep cycle where both the
body and brain enter a state of profound rest. During this stage, the brain generates Delta waves with frequencies
in the 0-4Hz range, which take a dominant role in brainwave activity (Xia et al., 2023). These low-frequency, high-
amplitude waveforms are the characteristic indicators of deep sleep. During deep sleep, there is a significant reduction
in physiological activity: the heart rate and breathing pace slow down by about 20-30%, blood pressure drops by
approximately 10-20%, and muscle tension and metabolic activity also decrease considerably. This sleep state is
extremely important for the human body, as it not only aids in physical recovery and repair but is also crucial for
memory consolidation and the healthy development of the brain (Caporale et al., 2021). A complete sleep cycle, which
includes alternating stages of NREM and REM sleep, typically lasts between 70 to 110 minutes. In a typical good
night’s sleep, this cycle may repeat 4 to 6 times. These cycles follow a specific sequence, beginning with N1 (the onset
of sleep), followed by N2 (light sleep) and N3 (deep sleep). After completing deep sleep, the cycle moves back to N2
before entering the REM phase. The transition from deep sleep (N3) back to light sleep (N1 or N2) leads into the
REM sleep phase. This continuous process ensures the quality and efficiency of sleep, which is crucial for physical
recovery and brain function (Basics, 2021).

Therefore, as long as professionals can detect the distribution and proportion of deep sleep during a person’s sleep,
they can effectively assess sleep quality. However, manually analyzing sleep EEG data in clinical diagnosis is an
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extremely time-consuming and energy-intensive task, reliant on highly skilled and experienced doctors. At the same
time, EEG signals are very weak and unstable with strong chaotic characteristics, and they are accompanied by
significant background noise. Traditionally, the interpretation of EEG has been manual. Due to the labor intensity and
the subjectivity involved, it’s difficult to implement EEG tests on a large scale for screening purposes. Monitoring a
patient’s sleep can require an extended period, sometimes up to a month of recording their EEG data. Such prolonged
monitoring may cause psychological stress for the patient and also implies that doctors have to manage a considerable
amount of data. Therefore, this method is challenging to disseminate widely among the general population (Chen
et al., 2008).

In this paper, we propose three data augmentation methods for feature extraction in sleep EEG data: Time Shifting
(TS), Amplitude Scaling (AS),and Noise Addition (NA). These methods are used to enhance the analysis of sleep
EEG data by applying certain transformations to existing data to generate more samples (Shorten & Khoshgoftaar,
2019). The advantage of this approach is that it helps the model learn data features better and improves the model’s
generalization ability. This not only shortens the period for patients to record sleep but also reduces the workload of
doctors to some extent. In the classification and grading stage, we propose three deep learning models: the DeepConvNet
model (Mekruksavanich & Jitpattanakul, 2022), the ShallowConvNet model and the EEGNet model (Lawhern et al.,
2018; Roots et al., 2020), which have become standard tools in deep learning research. DeepConvNet, a model based
on convolutional neural networks, excels in handling multi-channel EEG data and accurately determining different
sleep stages. In contrast, ShallowConvNet, a more streamlined convolutional neural network (CNN), is optimized
for time-domain feature processing, characterized by fewer convolutional and pooling layers, reduced parameters and
quicker training times. EEGNet merges CNN with Temporal Convolutional Network (TCN) in a hybrid format, adept
at leveraging the spatiotemporal characteristics of EEG data. This model features a compact structure and localized
connectivity, adept at capturing both temporal and frequency domain details in EEG signals (Zhao et al., 2023). To
assess the effectiveness of our data augmentation strategies in enhancing network model training and feature extraction,
we utilized the Sleep-EDF public datasets. This approach helped confirm the practicality and efficiency of using data
augmentation methods for feature extraction in sleep stage detection.

The rest of this paper is organized as follows: Section 2 describes the data augmentation methods used. Section 3
introduces the architectures of the three deep learning models. In Section 4, we introduce a validation method involving
K-fold cross-validation. Section 5 presents the database, device and experiments, followed by the experimental results
and the conclusion of the paper.

Data Augmentation

Artificial data augmentation holds key importance in machine learning, especially when dealing with biological data that
often shows notable rarity and heterogeneity (Anicet Zanini & Luna Colombini, 2020). Employing data augmentation
is a prevalent approach in extracting features from signals. This process entails isolating valuable and distinct features
from the collected data, which aids in enhancing learning, broadening generalization and easing human comprehension
(Sarangi et al., 2020). Such methods are instrumental in boosting the efficacy of models tasked with classifying
sleep stages. The features thus extracted can be utilized as inputs for various classification algorithms in machine
learning, including Support Vector Machines (SVM) (Cortes & Vapnik, 1995), Artificial Neural Networks (ANN)
or Random Forests (RF) (Guresen & Kayakutlu, 2011; Ho et al., 1995). This facilitates precise and dependable
tracking of cerebral activity during sleep. In our research, we aim to minimize the data volume needed for accurate
classification, consequently reducing the data-gathering burden on participants. Through a range of transformations
and syntheses applied to the original signal, data augmentation generates augmented datasets, thereby expanding data
variety, enhancing the resilience of models, addressing issues of data imbalance, and fostering the extraction of more
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comprehensive features (Shorten & Khoshgoftaar, 2019). The following are examples of augmented data application in
signal feature extraction:

Time Shifting. By shifting the original EEG data along the time axis, especially when dealing with sleep data,
we create a new time-shifted signal. This process involves moving the EEG data collected during sleep forward or
backward by a certain number of time steps, effectively simulating the temporal variation of brain activity during sleep.
The altered data thus presents a time-delayed version of the original signal. This technique helps the model recognize
temporal correlations within sleep data and enhances its understanding of the EEG data features’ changes during
different sleep stages, such as the variations in frequency rhythms (α waves, β waves, etc.) across light sleep, deep
sleep and REM sleep. Time shifting offers an in-depth understanding of the temporal dynamics in sleep data. In the
context of sleep EEG data, this time shifting helps the model accurately capture the relationships and dynamic changes
between deep sleep and other various sleep stages (Iwana & Uchida, 2021). Implementing time shifting not only enables
the model to better adapt to minor variations and shifts in sleep data but also improves the model’s overall robustness
in detecting sleep stages. Fig. 2 shows an example of sleep EEG data after undergoing 1000 instances of time shifting.

Fig. 2. RAM EEG Data and TS EEG Data

Amplitude Scaling. Amplitude scaling applied to EEG data can emphasize key features within the data. This
method effectively highlights the signal patterns and variations between deep sleep and other sleep stages, making it
easier for the model to identify key information. Transforming the Raw EEG data into a lower-dimensional feature
representation can simplify the feature space, potentially enhancing system efficiency and performance. Adjusting the
amplitude range of EEG data helps minimize the impact of noise, thus improving the accuracy and stability of the
model (Sanei & Chambers, 2013). Amplitude scaling ensures consistency of data across various amplitude ranges,
enabling effective comparison and analysis of data from diverse sources, sampling rates, or EEG equipment. This is
vital for building a universal model capable of classifying different sleep stages. Assuming the original EEG data is x(t),
the amplitude-scaled signal can be represented as ax(t), where a is the scaling factor, either a value greater than 1 for
amplification or less than 1 for reduction. Fig. 3 shows an example of sleep EEG data that has undergone amplitude
scaling.
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Fig. 3. RAM EEG Data and AS EEG Data

Noise Addition. Noise addition is a commonly used data augmentation technique in sleep data processing,
enhancing data diversity by introducing randomness and variation. In the analysis of sleep EEG data, adding various
types and intensities of noise to the Raw data simulates a wide range of data variations and noise interferences that
may occur during sleep, thereby enabling the model to better adapt and process various sleep data. This method is
particularly helpful in improving the robustness and generalization of the model when dealing with small or imbalanced
sleep datasets. By introducing moderate levels of noise, the model becomes more adaptable to real-world variations
and noise conditions found in sleep data. In this study, we employed the Gaussian noise method to enhance sleep EEG
data. The Gaussian noise method involves generating random numbers that follow a Gaussian distribution with a
mean of 0 and a specified variance, and adding these numbers to each feature of the sleep EEG data. Fig. 4 shows an
example of sleep EEG data after noise addition.

Fig. 4. RAM EEG Data and NA EEG data

Convolutional Neural Networks

In this paper, we introduce three deep learning models: DeepConvNet, ShallowConvNet and EEGNet, all of which
employ CNN architectures, focusing on enhancing the accuracy and efficiency of sleep stage classification. DeepConvNet
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is a 1D-CNN-based model designed specifically for processing one-dimensional sequential data like sleep EEG data
(Eren et al., 2019). This model is particularly suitable for analyzing and identifying deep sleep and other sleep stages in
sleep EEG data, as it is capable of effectively capturing subtle changes in time-series data. The ShallowConvNet model,
with fewer parameters and a shallow architecture, is ideal for simpler classification tasks, such as basic sleep stage
classification (like wakefulness, light sleep, deep sleep) (Roots et al., 2020). Its simplicity also results in faster training
and inference speeds, crucial for quickly analyzing large volumes of sleep data. EEGNet, designed specifically for EEG
data, takes into account both temporal and spatial correlations, as well as spectral features (Lawhern et al., 2018). This
provides it with unique advantages in automatically detecting and classifying sleep stages. Its lightweight architecture,
robustness, and interpretability make it an efficient tool, especially in handling complex sleep patterns in EEG data.
In summary, these three models each have their unique features and collectively offer a comprehensive and effective
solution for the analysis of sleep EEG data, particularly in the automatic classification and recognition of sleep stages.

DeepConvNet Model. The DeepConvNet model utilizes a one-dimensional convolutional neural network (1D-
CNN) to directly classify raw EEG signals without the need for any feature extraction stage, as the 1D-convolutional
layer is capable of extracting features from EEG data. The developed DeepConvNet model incorporates five different
types of layers: Convolutional layer, Dropout layer, Batch Normalization (BN) layer, Pooling layer and Fully Connected
(FC) layer. The architecture of the DeepConvNet model is illustrated in Fig. 5.

In each layer, convolutional kernels of size 5×1 are used to reduce the computational load during the feature extraction
stage. To ensure no features are missed, the stride of the convolutional kernel is set to 1. All convolutional layers utilize
the Rectified Linear Unit (Relu) activation function. To reduce the computational burden of the entire model while not
missing critical features, max-pooling layers with a pool size of 2×1 and a stride of 2 are set after each convolutional
layer. All feature maps obtained from the Flatten layer are flattened into a one-dimensional feature vector, serving as
the input for the first Fully Connected layer. The output from the first fully connected layer is nonlinearized using the
Relu activation function and dropout with a rate of 0.5, and then serves as the input for the second Fully Connected
layer. In this layer, the input EEG signals are classified into deep sleep and other sleep stages. To reduce the effect of
overfitting, Dropout layers and Batch Normalization layers are added at various locations. The Batch Normalization
layer normalizes the output from the upper max-pooling layer.

Fig. 5. Structure of DeepConvNet model

ShallowConvNet Model. ShallowConvNet, a specialized CNN design, is optimized for EEG data analysis.
Tailored for EEG data classification, it’s particularly useful in brain-computer interface (BCI) applications and the
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evaluation of cognitive states.

This network is structured into two primary sections. The initial section incorporates a sequence of convolutional
layers that process the EEG input to extract both spatial and temporal characteristics. This section comprises a 1D
convolutional layer, augmented by batch normalization, ReLU activation and average pooling, adept at identifying
local patterns and spatial connections within the EEG data. The subsequent section of ShallowConvNet transforms
the output from the first block into a flattened format, linking it to a dense (fully connected) layer. This dense layer
correlates directly with the intended classification category and is succeeded by a softmax activation function that
generates a class-based probability distribution. The design of the ShallowConvNet is depicted in Fig. 6.

Notable for its streamlined architecture, ShallowConvNet has fewer layers and parameters compared to more complex
CNN models, enhancing its computational efficiency and making it ideal for real-time operations. The network is
engineered to discern both spatial and temporal relationships in EEG data, enabling precise differentiation of various
brain states or classifications (Roots et al., 2020). It is also trainable with limited datasets, making it versatile in
settings with constrained data availability. In essence, ShallowConvNet stands out as a practical, lightweight model for
EEG data classification, widely recognized for its simplicity and efficacy in both neuroscientific research and clinical
contexts.

Fig. 6. Structure of ShallowConvNet Model

EEGNet Model. EEGNet is a deep learning model specifically designed for EEG signals (Lawhern et al.,
2018). Due to its relatively complex network structure, while limiting the number of parameters, and its outstanding
performance in various EEG-based tasks with low computational demands, EEGNet has seen widespread application.
The EEGNet model includes Block 1, Block 2 and a classification block, with its structure illustrated in Fig. 7.

In Block 1, two convolutional steps are performed sequentially. The raw EEG data is reshaped into an input of size
1×50, initially convolved by a 1×64 filter with a stride of 8, followed by a Batch Normalization (BN) layer. Subsequently,
each pooling layer uses a 1×4 average kernel size, with BN applied. Before applying the Exponential Linear Unit
(ELU), batch normalization is applied along the feature map dimension. To help regularize the model, the dropout
technique is utilized and the dropout is set for within-subject classification to prevent overfitting.

In Block 2, we employ 16 separable convolutions with a kernel size of 1×16, which is a depth convolution layer. The
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main role of separable convolutions is to reduce the number of parameters in the feature map, then optimally merge
the outputs, explicitly decoupling the relationships within and across feature maps. After this, batch normalization,
ELU and dropout are applied, similar to Block 1. Finally, an average pooling layer with a kernel size of 1×8 is used for
dimension reduction.

In the classification part, the extracted features are transformed into a one-dimensional format and divided into four
different categories using the SoftMax function. As SoftMax is a smooth and differentiable activation function, it
enables efficient computation of its gradients, which is suitable for backpropagation and weight updates during the
training process (Bishop & Nasrabadi, 2006).

Fig. 7. Structure of EEGNet Model

K-fold Cross-validation

In machine learning model development, it is a standard approach to partition the dataset into two distinct sets: one
for training and the other for testing. The test set, distinct from the training process, is not utilized during model
training. Its sole purpose is to provide an unbiased evaluation of a final model fit. A frequent challenge in model
training is overfitting, where the model excellently predicts training data but fails to generalize well to new, unseen
data. Adjusting model parameters using the test set during the training phase would compromise the model’s ability to
independently evaluate unseen data, leading to skewed final evaluation results. To counteract this, part of the training
data is often set aside as a validation set. This validation set is used to gauge the model’s performance during the
training process without compromising the test set’s integrity.

The validation set, derived from the original training data, is excluded from the training phase. This exclusion is
critical to objectively assess the model’s predictive power on data that was not part of its learning process. The model’s
performance on the validation set is typically assessed using cross-validation techniques. These techniques are designed
to provide a robust evaluation of the model’s effectiveness on data it has not been exposed to, thereby reducing both
the evaluation’s bias and variance. In cross-validation, the data is segmented into K equal parts (K-Fold), with each
segment alternately used as a validation set and the remaining parts as the training set. This process results in K
separate models, each tested against its respective validation set (Fushiki, 2011). The performance of these models
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is then aggregated, usually by calculating and averaging their mean squared errors (MSE), to yield a comprehensive
cross-validation error measure. This approach of 10-fold cross-validation, where the data is divided into ten parts,
enhances the efficient use of data as each segment is used for both validation and training (Rodriguez et al., 2009).

In this study, the 10-fold cross-validation method, a standard variant where k equals 10, is employed. The entire
dataset is evenly split into ten portions, with each portion sequentially serving as the test set and the remaining nine
as the training set. This arrangement ensures each data portion is used once as a test set and nine times as part of
the training set. During each of the ten cycles, the model is trained using the nine subsets and evaluated using the
unique test subset. Evaluation metrics such as accuracy, precision, and mean squared error are recorded during each
cycle. The culmination of this process is the calculation of the average of these metrics across all ten cycles, providing
a holistic view of the model’s performance. The structure of 10-fold cross-validation is shown in Fig. 8.

Fig. 8. K-fold cross validation (K = 10)

Data Analysis

Dataset. This article utilizes EEG data derived from two distinct sources, one being the Sleep-EDF (Extended
Sleep-EDF) dataset (Kemp et al., 2000). This accessible dataset, the Sleep-EDF, offers a comprehensive collection of
EEG, electrooculography (EOG), chin electromyography (EMG), along with respiration and body temperature data
(our study exclusively employed EEG data) gathered from 197 individuals over an entire night. These EEG recordings
were meticulously labeled by skilled technicians following the guidelines outlined in the Rechtschaffen and Kales manual
((JSSR): et al., 2001). Recorded at a 100Hz sampling rate, these annotations were conducted at 30-second intervals,
yielding 3000 samples. Our research primarily focused on the SC files, acquired from a research project conducted
from 1987 to 1991, which explored sleep aging effects in healthy Caucasian individuals aged between 25 and 101 years,
notably in the absence of any sleep-inducing medications (Mourtazaev et al., 1995). This study involved capturing
approximately two 20-hour sleep recordings of each subject at their residence over two consecutive day-night cycles
(Kemp & Olivan, 2003).

Device and Experiment. In this paper, the web-based, openly accessible Sleep-EDF Dataset is employed to
explore the viability of signal feature extraction for enhancing data augmentation and to analyze the performance

9



International Journal of Computer and Technology Vol 24 (2024) ISSN: 2277-3061 https://rajpub.com/index.php/ijct

of three specific models. The development of these models was undertaken using the Python programming language
within the PyTorch framework. This task was performed on a robust workstation, which is outfitted with a 12-core
Intel Core i7 3.50 GHz (5930K) processor, complemented by a GeForce RTX 2080 Ti GPU, and equipped with 128 GB
of RAM for efficient processing.

The experimental data consists of a total of 12,000 entries, randomly selected from a public database. In our training
approach, we employ a 10-fold cross-validation technique, where the dataset is evenly split into 10 segments. Of
these, nine segments serve as the training sets, and one is utilized as the test set. To enrich our data, we apply data
augmentation techniques to the EEG data within the training set, creating additional data. This augmented data
is then merged with the original training set, forming an enhanced training dataset. Our training process spans 200
epochs, with each batch comprising 512 samples. During this process, we implement validation checks and retain the
model weights that yield the minimum loss on the validation set. The use of 10-fold cross-validation in our methodology
aims to bolster the reliability of our results. The main process of the classification is shown in Fig. 9.

Fig. 9. Main process of classification

The model divides the entire dataset into two categories, namely deep sleep and other sleep stages, with the aim
of enhancing the precision of classification and conducting a thorough analysis of the input data. Additionally, this
classification system can be seamlessly adapted to other various standards, such as distinguishing between light and
deep sleep phases, or categorizing sleep into REM and NREM stages.

Results

In this paper, we conducted a series of 12 experiments focused on sleep data analysis. Initially, we fed the raw sleep
data independently into three neural network models: DeepConvNet, ShallowConvNet and EEGNet, for the purpose of
classification learning. This allowed us to determine the accuracy of each model. Next, we employed three distinct data
augmentation methods (Time Shifting, Amplitude Scaling and Noise Addition) to enhance the feature extraction process.
The data produced through these augmentation techniques was then integrated with the original sleep data, creating
three enriched datasets. These enhanced datasets were subsequently used to train the same models: DeepConvNet,
ShallowConvNet and EEGNet, and their respective accuracies were measured. These dataset was utilized to train the
three deep learning models, assessing their classification effectiveness on sleep data. The accuracies obtained using the
raw sleep data and the augmented data in these deep learning models are tabulated in Table 1.
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Table 1. Accuracy of raw data and augmented data with three different deep learning models

DeepConvNet ShallowConvNet EEGNet

Raw Data 94.12% 92.15% 93.38%

Raw Data + TS Data 95.05% 92.26% 94.46%

Raw Data + AS Data 94.75% 92.87% 94.32%

Raw Data + NA Data 94.60% 92.31% 93.50%

While the outcomes didn’t achieve the optimal accuracy in pinpointing deep sleep stages, our experiments highlight that
incorporating a variety of data augmentation techniques across several deep learning models enhances their accuracy
beyond the use of unprocessed data. This method of data augmentation in the preprocessing phase is notably more
efficient and expedient than alternatives like EMD or entropy techniques.

Our experiments demonstrate that employing three different data augmentation methods for feature extraction
significantly enhances the performance of all three evaluated deep learning models. The combined application of these
methods resulted in a notable boost in accuracy over models that relied solely on raw data. Additionally, there is
considerable potential for refining the accuracy further by fine-tuning the structural parameters of the neural networks
and optimizing the specifics of the data augmentation process. This approach opens up new avenues for advancing the
precision of sleep stage classification, paving the way for more effective and nuanced sleep analysis.

Conclusions

In recent years, the rapid development of machine learning has garnered widespread attention, with increasing efficiency
and accuracy, opening new possibilities in the field of signal recognition. Locating deep sleep stages essentially involves
recognizing different signals, and relying on machine learning for this task is a promising research direction. In this
paper, we devised a new method using a data augmentation feature extraction algorithm to provide more information
to CNNs, thereby achieving more accurate models. We also presented and compared the performance of three different
models (DeepConvNet, ShallowConvNet and EEGNet) in EEG data classification. Based on our experimental results,
we found that three data augmentation methods (Time Shifting, Amplitude Scaling and Noise Addition) significantly
improved model accuracy for various deep learning models. Compared to the latest classification results, these networks
still have room for improvement in accuracy. Further tuning of parameters and optimizing the CNN structure should
lead to higher accuracy levels. Additionally, in subsequent experiments, it is worthwhile to try combining more
transformations such as mirroring, elastic deformation and frequency rotation, or using more channels of other feature
extraction methods to enhance accuracy.

Previous research has already demonstrated the effectiveness of deep learning methods in accurately and stably
identifying deep sleep stages in clinical practice. Moreover, the training and classification process of the entire system
is more efficient and cost-effective than manual identification. Once trained, the model can be used long-term, offering
practical application value in real life. Furthermore, it is reasonable to attempt to train classification models in other
areas of health assessment based on biosignal frequency domain features, thereby achieving improved recognition and
cognitive accuracy.

Sleep is closely related to everyone’s life, yet deep sleep is crucial for bodily repair and recovery, immune system
strengthening, memory consolidation and enhancement of learning abilities. Therefore, we hope to monitor the deep
sleep stages in our sleep using the aforementioned methods, applying scientific approaches to improve the proportion of
deep sleep in everyone’s sleep cycle.
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