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Abstract

BCI have ignited extensive research interest in fields such as neuroscience, artificial intelligence, and biomedical
engineering, as they offer an opportunity to interact directly with the external environment using brain signals. Despite
the immense potential for applications, practical use of BCI still faces several challenges, including equipment cost and
operational complexity. This study aims to develop a Brain-Computer Interface system based on P300 visual stimuli,
utilizing a low-cost, user-friendly portable Muse EEG equipment for data acquisition. We designed and implemented a
P300 visual stimulator in a 3x3 grid pattern, acquire the user’s EEG signals using the Muse EEG equipment, and
classify the data using a SVM classifier, ultimately realizing control over robot movement. Offline experimental results
demonstrated an accuracy of 84.1% for the classifier under offline stage, while online stage achieved a successful
execution rate of 81.2%. These findings substantiate the feasibility and potential of using low-cost, portable devices
like the Muse EEG equipment for BCI research, opening new avenues in the field.
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I. Introduction

Brain-Computer Interfaces (BCIs) as a frontier technology, have sparked wide-ranging interest in scientific research
[Wolpaw and Wolpaw(2012)]. The crux of its novelty lies in allowing users to interact and control the external
environment directly using brain signals [Mak and Wolpaw(2009)], providing vast new horizons for the advancement
of fields such as neuroscience, artificial intelligence, and biomedical engineering. Particularly in aiding disabled
individuals to regain perceptual and behavioral abilities, as well as applications in gaming and virtual reality (VR)
[Lécuyer et al.(2008)Lécuyer, Lotte, Reilly, Leeb, Hirose, and Slater], BCIs have shown limitless potential.

However, despite the countless possibilities that BCIs present, their realization also faces significant challenges, such as
high equipment costs, complex data processing requirements, and noise interference issues [Nicolas-Alonso and Gomez-Gil(2012)].
One of the major challenges in the BCI field at present is enhancing its practicality in mobile devices and home environ-
ments [Allison et al.(2010)Allison, Brunner, Kaiser, Müller-Putz, Neuper, and Pfurtscheller]. This includes speeding
up signal processing, reducing equipment costs, and designing more intuitive and convenient human-computer interfaces.
In this study, we used a low-cost portable electroencephalogram device, Muse, to explore its potential applications in
P300 visual stimulus experiments and established a robot movement control BCI system based on P300 visual stimuli.

P300, Steady-State Visually Evoked Potentials (SSVEP), and Motor Imagery (MI) represent the three most used
neurophysiological signal types in BCI research, each carrying its unique advantages and challenges. P300 is a widely
recognized event-related potential (ERP), typically elicited during tasks demanding decision-making or attention. The
"P" stands for positive, and the "300" stands for 300 milliseconds, which is roughly the peak latency of this signal
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following a stimulus. Its strengths lie in the relative simplicity of its identification process and its stable existence
in the majority of individuals [Polich(2007)]. Nevertheless, P300 has limitations, in that its amplitude and latency
may be influenced by factors like task difficulty, attention, and fatigue, which could compromise the performance and
reliability of BCI systems. SSVEP represents a SSVEP induced by visual stimuli of specific frequencies. Its advantages
include high frequency resolution, rapid information transfer rate, and the ability to be utilized without prior training
[Chen et al.(2015)Chen, Wang, Nakanishi, Gao, Jung, and Gao]. However, SSVEP requires users to fix their gaze on
flickering stimuli for extended periods, potentially leading to visual fatigue or discomfort. MI, or Motor Imagery, involves
users imagining performing specific motor tasks, such as the movement of the left or right hand, thereby generating
particular brain activity patterns. The strength of MI lies in its provision of a freely controlled signal source by users,
rendering MI widely applicable in areas like neurofeedback and motor rehabilitation [Pfurtscheller and Neuper(2001)].
Yet, MI typically requires extensive training, which could pose a burden to users. In comparison to SSVEP and MI,
the main advantage of P300 is its ease of use and broad adaptability. Unlike the complex visual attention demanded by
SSVEP or the extensive training required for MI, P300 does not necessitate these laborious preparatory procedures.
Moreover, P300 can be applied to various types of stimuli and application scenarios, thereby enhancing the flexibility
and applicability of BCI systems.

In exploring the practical applications of BCI technology, device cost and operational complexity represent significant
challenges. While precise electroencephalogram (EEG) and Magnetoencephalogram (MEG) devices can provide
high-resolution brain electrical signals, their high costs and maintenance complexities limit their usage in everyday en-
vironments [Gramann et al.(2011)Gramann, Gwin, Ferris, Oie, Jung, Lin, Liao, and Makeig]. In this study, we utilize
the Muse EEG equipment, which is low-cost, user-friendly, and portable. The Muse EEG equipment can acquire and
feedback frontal lobe EEG signals in real-time, allowing users to conduct EEG acquisition and analysis conveniently in
any setting [Ratti et al.(2017)Ratti, Waninger, Berka, Ruffini, and Verma]. Although the accuracy and signal-to-noise
ratio of the Muse EEG equipment cannot compete with high-precision EEG equipment, its low cost and user-friendliness
make it an ideal choice for BCI experiments. Figure.1 and Figure.2 show the Muse EEG equipment and the position of
the 4 electrodes.

Figure 1. The Muse EEG equipment.
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Figure 2. The position of the 4 electrodes.

In this study, we focus on developing a 3x3 grid pattern stimulator reliant on P300 visual stimuli. This stimulator
elicits the user’s P300 responses by probabilistically flashing a white circular target stimulus. To verify the efficacy of
our design, we initially conducted a series of offline experiments, acquiring subjects’ EEG data using the Muse EEG
equipment. The results indicated that the Muse EEG equipment could effectively capture P300 EEG components.
Subsequently, we extracted feature data from the experimental data collected from 3 subjects, which was then used to
train a Support Vector Machine (SVM) classifier. The trained classifier achieved an accuracy rate of 84.1% in an offline
environment. Upon successful completion of the offline experiments, we proceeded with real-time experiments. In the
real-time experiments, we used by the pre-trained SVM classifier to process in real time the EEG signals containing
P300 components acquired from the Muse EEG equipment and successfully transformed the classification results into
control commands for robots. The success rate of this process reached 81.2%, further affirming the reliability of our
system in practical operational environments. Our research offers a beneficial practical example for the design of P300
visual stimulus based BCIs and opens a new path for conducting BCI experiments using the Muse EEG equipment.
Our results also suggest that the utilization of SVM for EEG signal classification can effectively enhance the accuracy
and reliability of BCI systems.

In this paper, we will elaborate on our research findings in detail. In the upcoming Chapter II, we will delve into the
research methodologies we employed, including the detailed design of the P300 visual stimulator, the construction of
the SVM classifier, and the architecture of our comprehensive robot movement control BCI system based on P300.
Our Chapter III will present our offline and online experiments and the resulting findings. In Chapter IV, we will
interpret and discuss our experimental results, along with the strengths and limitations of our study. Lastly, in Chapter
V, we will summarize the entire study and discuss potential future research directions and challenges that may be
encountered.

II. METHOD

a. P300 Visual Stimulator

The primary focus within our designed BCI system lies in the design and realization of the P300 visual stimulator. Various
forms of P300 stimulators exist, encompassing visual, auditory, and tactile stimulators [Krusienski et al.(2006)Krusienski, Sellers, Cabestaing, Bayoudh, McFarland, Vaughan, and Wolpaw].
Due to their intuitive and easy-to-manipulate nature, visual stimulators have found widespread application in practice
[Martens et al.(2009)Martens, Hill, Farquhar, and Schölkopf]. In this study, we developed a P300 visual stimulator
based on a 3x3 grid pattern. Unlike the traditional row-column P300 visual stimulator, our 3x3 grid pattern stimulator
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utilizes nine graphical units, each bearing a white circular image serving as the stimulus signal. For five control
commands, the white circular image appears and disappears in five units in one epoch. Any instance of the white
circular image appearing in a specific unit, in contrast to the image in other units at other time points, is considered a
rare stimulus. The interval between two successive stimuli can be freely set, generally required to be at least 400ms but
adjustable according to the individual differences of subjects. The graphical interface of the P300 visual stimulator we
designed is shown in Fig.3.

Figure 3. The graphical interface of the P300 visual stimulator.

The P300 visual stimulator we designed sends EEG data through the Lab Streaming Layer (LSL) encompassing three
columns. The first column is time stamps in units of 1/256 seconds, the second column represents the stimulus labels
corresponding to the time stamps, and the third column indicates the moment at which the subject presses the space bar
when their chosen stimulus signal appears, defaulting to 0 if no key is pressed. By default, our P300 visual stimulator
sends data once per second, with data shape as (3, 256). This setting ensures the provision of stimulus signals to
the subject in a steady and continuous manner within the unit time. The sending frequency of this stimulator can
be flexibly adjusted to suit different experimental needs and the reaction speeds of subjects. This structured data
design facilitates subsequent data processing and analysis, aiding in the precise capture and understanding of subjects’
responses to various stimulus signals. An advantage of our designed stimulator is the capability of customizing the
flashing frequency of the stimuli according to the needs of the subjects. More importantly, while ensuring the effective
stimulation, subjects are less likely to feel fatigued, significantly enhancing the user experience in the experiment.

b. Support Vector Machine

Support Vector Machines (SVM) is a supervised learning algorithm that has been widely applied to various problems,
particularly in classification issues within BCI systems. Proposed by Cortes and Vapnik in 1995, the main goal of SVM
is to find an optimal hyperplane that maximizes the margin between different classes, thereby effectively partitioning
the binary classification problem. In a typical dataset (xi yi), xi denotes input features, and yi represents class labels.
The primary task of SVM is to find a hyperplane that maximizes the distance from the hyperplane to the nearest
points of the two classes.

In BCI systems, SVM is often employed as a classifier to categorize features extracted from EEG signals, thereby
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enabling the decoding of EEG signals. Notably, in P300-based BCI systems, SVM can be used to recognize the
presence of P300 potentials and their corresponding stimulus sources. Compared to other classification methods, such
as Linear Discriminant Analysis (LDA) or K-Nearest Neighbors (KNN), SVM exhibits superior performance in handling
high-dimensional feature spaces, especially in non-linear separable problems. Furthermore, SVM can effectively solve
non-linear problems by choosing an appropriate kernel function, providing a significant advantage in handling complex
EEG signals.

In our constructed P300-based robot movement control BCI system, we initially verified the effective capture of P300
signals using EEG signals collected with the Muse EEG equipment headset in offline experiments. Subsequently, we
employed SVM as the classifier to train and test our obtained EEG dataset. The experimental results showed that the
trained SVM classifier exhibited good performance in real-time testing during online experiments. These experimental
results provided empirical support for the superiority of SVM in BCI research and application and offered useful
references for further development and optimization of supervised learning algorithms in BCI systems.

c. P300-based Brain-Computer Interface System

In this study, we developed a P300-based BCI system for real-time robot control. The core parts of this system include
a self-designed 3x3 grid pattern visual stimulator, a Muse EEG equipment, a Nao robot as the controlled object, and
an offline trained SVM classifier.

Our visual stimulator was developed using the Pygame package in the Python programming language, adopting a
3x3 layout design and independently adjustable stimulus flashing frequency to meet different experimental needs. To
synchronize event markers and timestamps, we adopted the LSL protocol. This protocol not only recorded labels and
timestamps of the stimulator but also precisely captured the time points of the subject’s pressing keys, and these data
were transmitted in real-time to the signal processing script. The Nao robot we used in the experiment, developed
by Aldebaran Robotics in France, is an autonomous walking, highly interactive robot capable of facial and object
recognition. It is widely used in education, research, and medical rehabilitation fields. In our experiment, the Nao
robot performed corresponding movements upon receiving control commands corresponding to positional information.

The Muse EEG equipment we selected, with a sampling frequency of 256Hz, served as the EEG signal acquisition
device, transmitting real-time collected EEG signals to the signal processing script via Bluetooth wireless. In the signal
processing part, we synchronized the timestamps when subjects pressed keys with corresponding labels through the
LSL protocol. When the number of key presses reached a predetermined threshold, the script automatically extracted
all 1-second-long EEG signals corresponding to the timestamps, followed by filtering and arithmetic mean operations.
Subsequently, we used by the pre-trained SVM classifier to classify the pre-processed signals, differentiating them into
0 (no P300 component) and 1 (P300 component present). When the classification result was 1, the script located on
the flashing label of the stimulator signal corresponding to the subject’s keypress event, determined the position of
the target signal, and then translated this positional information into a control command for the Nao robot. Figure.4
shows the block diagram of the designed P300-Based BCI system.
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Figure 4. The block diagram of the designed P300-Based BCI system.

III. EXPERIMENT AND RESULT

In P300-Based BCI systems, there are generally some basic assumptions and constraints. Firstly, the subject is
required to maintain sustained concentration, as the generation of P300 signals necessitates that the subjects remain
attentively focused on visual stimuli [Polich(2007)]. If the subject becomes distracted or fatigued, the resulting
P300 may be diminished, thereby affecting the performance of the system. Secondly, the variety of P300 signals
presents a challenge. The amplitude and latency of P300 signals may vary among individuals, and even within
the same individual at different times. This variability may impact the training and performance of the classifier
[Lotte et al.(2018)Lotte, Bougrain, Cichocki, Clerc, Congedo, Rakotomamonjy, and Yger]. Finally, the acquisition of
training data is important. Due to the high variability of P300, the classifier may require a large amount of training data to
achieve optimal performance [Lotte et al.(2018)Lotte, Bougrain, Cichocki, Clerc, Congedo, Rakotomamonjy, and Yger].

In consideration of these assumptions and constraints, we took a series of measures to optimize our experimental
design. During the experiments, we asked the subjects to rest after a certain number of trials to ensure that they
maintain sufficient attention throughout the experiment. To ensure the consistency of the experimental environment,
we chose to conduct the experiment in a relatively dark, noise-free environment. We also asked the subjects to clean
the electrodes of the Muse EEG equipment and the area of skin in contact with the electrodes using alcohol wipes
before each experiment to minimize noise and interference.

Our experimental design is mainly divided into offline and online stages. In the offline stage, our primary task is to
verify whether the Muse EEG equipment can effectively collect EEG signals containing P300 components. We had the
subjects focus on target stimuli on the visual stimulator, then carried out preprocessing and feature extraction, and
trained the SVM classifier, performing parameter selection and optimization at this stage. The results of the offline
stage provide an important premise and the basis for the subsequent online stage. Once in the online stage, we utilized
the SVM classifier trained in the offline stage to classify the real-time EEG signals acquired from the Muse EEG
equipment. In this stage, we simulated actual application scenarios, requiring the subjects to generate EEG signals
containing P300 components by focusing on the target stimuli on the visual stimulator, then implemented real-time
control of the Nao robot based on the output of the classifier. The results of the online stage directly demonstrate the
system’s performance in practical applications. Figure.5 shows the flow chart of the experiment.
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Figure 5. The flow chart of the offline and online experiment.

a. Offline Stage

Step 1 The subjects cleaned their foreheads, the edge part of their ears, and the electrodes of the Muse EEG equipment
using alcohol wipes. The subjects then wore the Muse EEG equipment, and the current EEG readings from the
electrodes were confirmed through an oscilloscope program to ensure that the collected EEGs contained minimal or
no noise components. Step 2 The stimulator was run, and the space key was randomly pressed to test whether the
stimulator could receive real-time hit times. Step 3 The EEG recording code was executed. Taking a recording duration
of 60s as an example, after running the EEG recording code, the subject immediately looked at the stimulator. The
flashing interval of the stimulator was set to 400ms, and the duration of the stimulus block was 100ms. After selecting
a specific stimulus unit, the subject pressed the space key each time the stimulus appeared and was asked to count,
acquiring EEGs containing P300 components. After the EEG recording time was reached, the recording was completed.
Step 4 Step 3 was run to collect n pieces EEG signals of length 256. Step 5 The EEG signal processing code was
executed. The collected EEGs were averaged out using the arithmetic mean by using the TP9 and TP10 channel
EEG data, converted to one-dimensional data. The resulting data was passed through a 0.5-35Hz band-pass filter and
reshaped into n sets of data of length 256. Data with a maximum amplitude exceeding 80 were removed, resulting in m
sets of data. Step 6 The obtained m sets of EEG signals containing P300 components were averaged out using the
arithmetic mean. Figure.6 shows the P300 component of the EEG signals after using the arithmetic mean. Step 7
The m sets of data were randomly shuffled and averaged in sets of 4, resulting in k sets of EEG data containing P300
components. Step 8 Steps 2-4 were run, g sets of EEG data of length 256 were randomly collected, the subject did
not look at the stimulator, and pressed the space key randomly, obtaining EEGs without P300 components. Step 5
was run to obtain h sets of arithmetic mean EEG data without P300 components. The obtained k sets of averaged
EEG data with P300 components and h sets of averaged EEG data without P300 components were combined and
randomly shuffled, and the shuffled data was split into an 80:20 ratio. 80% was used as training data input into the
SVM, yielding the SVM classifier. 20% was used as test data to test the accuracy of the obtained SVM classifier. When
the classifier’s accuracy reached above 75%, the obtained SVM classifier was used in the online experiment for real-time
classification of EEG signals.

b. Offline Stage Results

In the offline stage of the P300-based robot control BCI system experiment, we validated the conclusion that the Muse
EEG equipment can capture P300 components in the subject’s EEGs. We collected 2173 pieces of EEG signals, each of
length 256, containing P300 components from 3 subjects. After filtering and reject high-amplitude noise, the data were
randomly shuffled, and 1600 pieces of signals were selected. The data were then subjected to arithmetic mean every 4
signals, converting them into a single one-dimensional data sequence of length 256, yielding a total of 400 pieces of
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signals. Non-target signals were processed in the same way, producing 400 pieces of non-target signals. Both categories
of data were merged and shuffled, with 80% selected for training the SVM classifier, and the remaining 20% used as
a test set to assess the performance of the SVM classifier. The test set consisted of 160 signals, of which 133 were
successfully classified, resulting in a classifier accuracy rate of 84.1%. As shown in Fig.6, after 1600 pieces of target
EEG signals and 1600 pieces of non-target EEG signals averaged out using the arithmetic mean, we can see that the
noise components in the signal are suppressed, and a clear positive wave appears at 300ms, proving the existence of
P300 components.

Figure 6. The P300 component of the EEG signals after using the arithmetic mean.

c. Online Stage

Step 1 The subjects cleaned their foreheads, the edge part of their ears, and the electrodes of the Muse EEG equipment
using alcohol wipes. The subjects then wore the Muse EEG equipment, and the current EEG readings from the
electrodes were confirmed through an oscilloscope program to ensure that the collected EEGs contained minimal or
no noise components. Step 2 The stimulator was run, and the space key was randomly pressed to test whether the
stimulator could receive real-time hit times. Step 3 The online P300-based BCI robot control program was run. By
default, the experiment considered 4 or more space key presses as a command. That is, when the subjects visually
targeted the stimulator, they selected one stimulus unit, and each time this stimulus unit displayed a white circular
image, they pressed the space key. After pressing, a command was generated. Step 4 After 4 or more keypress, the
program filtered and averaged the EEGs corresponding to the keypress times, and the resulting EEG signal was
transmitted to the SVM classifier. Step 5 The SVM classifier performed classification calculations on the received
EEG signals. If the classification result was 1, indicating that the transmitted EEGs contained P300 components, the
experiment was deemed successful. Using timestamps, the stimulator label corresponding to the keypress was identified,
obtaining the position of the stimulus unit that the subject was visually targeting at the time of the keypress, i.e., the
subject’s command. This command was then transmitted to the Nao robot, realizing EEG-controlled robot operation.

d. Online Stage Results

We invited 3 subjects to participate in a total of 500 trials. 406 trials were classified successfully. The control commands
for the robot given by the subjects were random, but they were asked to ensure that the quantity of each command
was as balanced as possible. The online experiment accuracy rate of the 3 subjects reached 81.2%.

IV. DISCUSSION
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In our study, we designed and implemented a P300-based BCI system for real-time control of robot movements. The
results of the offline experiment demonstrate that our system can effectively identify and classify P300 signals, while
the online experiment further validates the feasibility and effectiveness of our system in practical applications.

In our system, we employed a SVM classifier, a tool proven to be powerful in many studies aiming at classifying EEG
signals. The SVM classifier also displayed exceptional performance with an accuracy rate of 84.1%, consistent with the
results obtained in previous research. In regard to portable Muse EEG equipment, the positioning of its electrodes
does not coincide with the central cranial region traditionally utilized in P300 experiments, resulting in a relatively
lower volume of P300 components within the collected brainwave data. Consequently, for BCI systems established
using Muse EEG equipment, acquiring quality signals takes precedence over merely accumulating a large quantity.
The introduction of an excessive number of ineffective signals contributes substantially to noise interference, thereby
significantly impacting the classification performance.

However, it should be noted that while our experimental results are promising, there are still some limitations. Firstly,
our sample size was limited, involving only 3 subjects, which may restrict the universality of our results. To verify
the effectiveness of our system in a broader population, larger scale sample testing is needed. Secondly, our online
experiment was conducted only in the specific task of controlling robot movements, and further exploration of its
application in other tasks is necessary, such as controlling a robot in complex operations. Thirdly, although we have
demonstrated that P300 component-containing EEG signals can be collected from subjects using the Muse EEG
equipment, the success rate of our experiment is still not high. Additionally, the results are prone to be affected by
external environmental factors and individual differences among participants, leading to instability in the experimental
outcomes. In future experiments, we will consider more effective and stable stimulation techniques and classification
methods.

Despite these limitations, our research still provides valuable evidence for the development of EEG-based control
systems. Our results offer a promising direction for the realization of everyday application of portable EEG equipment
like the Muse, that is, real-time and efficient EEG control by identifying and classifying P300 signals. Particularly in
assisting people with disabilities or those unable to perform regular operations in their daily activities, our research has
enormous potential and practical application value.

V. CONCLUSION

The practical application of BCI confronts multiple challenges, including device costs and complexity of operation. We
designed and implemented a 3x3 grid pattern P300 visual stimulator, wore the Muse EEG equipment to acquire user’s
EEG signals, and classified the EEG data using a SVM classifier to ultimately achieve control over robot movement.
Our experiment comprised both offline and online stages. The offline stage was primarily for training the SVM classifier
and verifying its efficacy in identifying EEG signals containing P300 stimulus components. The online stage sought
to validate the system in actual operation. After analyzing the offline experiment, we found that the SVM classifier
exhibited well accuracy in identifying EEG signals containing P300 components. The online experiment demonstrated
that the real-time success rate of the system in controlling robot actions could exceed 81.2%, which showcases the
feasibility and efficacy of our system in practical application.

Overall, our study showcases the potential of portable EEG equipment in experiments involving real-time robot control
systems based on P300 visual stimulus. Although there are current limitations, our research provides fresh insights for
future study in this field and presents possible directions for further optimizing and refining brain control systems.
Particularly in assisting individuals with disabilities or those unable to perform regular operations in their daily
activities, our research holds substantial application potential.
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