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Abstract

This study presents a method for estimating the latency of each LLVM-IR instruction to enable effective parallelization
in model-based development. In recent embedded systems, such as in-vehicle electronic control, multi-many-core
processors are utilized for the hardware, and model-based development for software. In the design of these systems, the
degree of parallelism and accuracy of performance estimation in the early design stages of the model-based development
can be improved by estimating the performance of the blocks in the models and utilizing the estimate for parallelization.
Research is therefore being performed on a software performance estimation technique that uses IEEE2804-2019
hardware feature description called Software-Hardware Interface for Multi-many-core (SHIM). In SHIM, each LLVM-IR
instruction is associated with an execution cycle of the target processor. Several types of assembly instruction sequences
are generated for the target processor from a given LLVM-IR instruction; thus, it is not easy to estimate the number of
execution cycles. In this study, we propose a method that uses deep neural networks to estimate execution cycles for
each LLVM-IR instruction. It can be observed that our method obtains a better estimation of LLVM-IR instruction

latency compared with previous methods in experiments using the Raspberry Pi3 Model B+.
Keywords: SHIM, embedded system, multicore, estimation, neural network
1. Introduction

The increasing scale and complexity of embedded systems in recent years have resulted in a corresponding increase in
hardware performance requirements. Single-core processors were used to satisfy these requirements. However, their
use has become problematic owing to their limited performance and has increased the power consumption and heat

generation. Therefore, the use of multi-many-core processors to improve the performance is expected.

In addition, the labor hours and work costs for control system design and development are increasing because of the
increased scale and complexity of control systems. This has led to the popularity of model-based development to reduce
development time and human error. In model-based development, a control system is represented by an abstract model.

The design was applied to the model.

Owing to these factors, parallelization to support multi-many-core model-based developments is required. One approach
to parallelization is the code-based approach [7], in which the sequential code generated from the model is parallelized.
Because parallelization is not considered during the design of the model in this approach, the degree of parallelism
cannot be improved easily. In addition, if the performance target is not satisfied after parallelization, the system must

be redesigned from scratch, which results in high rework costs.

Another approach for parallelization is the model-based approach [3]. In this approach, parallelization was considered
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during the system-design stage to achieve a high degree of parallelism. Moreover, parallel code instead of sequential

code is automatically generated from the model.

However, to increase the parallelism, it is necessary to consider the processing time of each block in the load balancing

model. To achieve this, it is crucial to devise a method for estimating the performance of the model design.

The performance estimation in model-based parallelization should not require an actual machine or instruction set
simulator (ISS), and the features of the actual machine should be considered during the estimation. This is because it
is not easy to use the development environment for embedded systems for the target processor in model-level design,

especially during the early design phase.

To address these issues, performance estimation methods are being researched based on the IEEE 2804-2019 hardware
abstraction description [6] called the software-hardware interface for multi-many-core (SHIM) which is an XML file

that describes the hardware features as parameters.

In SHIM, to make tools using SHIM target independent, the LLVM-IR instruction set [9] from the LLVM project [8]|
was used for the processor instructions, instead of the instruction set of the target processor. The use of LLVM-IR has
two limitations in terms of performance estimation. 1) Because the LLVM-IR assumes an infinite number of virtual

registers, there is no register spilling in the LLVM-IR code. 2) Several sequences of the target code are generated using
the LLVM-IR instruction.

Mikami et al. [I1], to overcome these issues, proposed A) a method for software performance estimation using SHIM,
and B) a method for the performance estimation of each LLVM-IR instruction to be stored in SHIM based on a
regression analysis and created open-source software [16]. In the design flow, SHIM is first created for the target
processor using Proposal B) in target-dependent environments. The performance of the system is then estimated
with the created SHIM using Proposal A) with target-independent tools. Although this method reduced the cost of
producing SHIM and the error in the estimated performance with SHIM within a target error of £20%, the error in

the estimated latency for each LLVM-IR instruction remained large.

In this study, we propose an estimation method that uses deep neural networks (DNNs) instead of regression analysis,
in which we propose a two-step estimation where the execution count of each target assembler instruction is estimated
first. The LLVM-IR latencies are then estimated. In the experimental results obtained using the same environment as
[11], the proposed method obtained a much better estimation of LLVM-IR.

The remainder of this paper is organized as follows. Section 2 provides a brief background of related work and previous
studies on performance estimation using SHIM. Section 3 describes our proposed method for LLVM-IR instruction
latency estimation using DNN, and Section 4 presents an evaluation of the LLVM-IR latency and software performance
estimation with SHIM described in Section 3 on a Raspberry Pi3 Model B+.

2. Performance Estimation with SHIM
2.1. SHIM |[6]

The widespread use of multi-many-core processors has led to the emergence of new architectures with various
characteristics from which the user must select the optimal processor in specific applications. This has led to an
increased burden on vendors of tools for analysis, optimization, and automatic parallelization, and real-time operating
systems, which are forced to handle a wide variety of processors. System developers require tools with high portability
and quality to efficiently use a wide variety of multicore devices. However, tool development requires reading voluminous

manuals and an understanding the characteristics of each processor.
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Figure 1: SHIM schematic

To address this issue, the Multicore Association [2] developed an international standard called SHIM (Software-
Hardware Interface for Multi-many-core) to support the development of tools for multicore devices. SHIM2.0 was
standardized by the IEEE in 2019 [6]. Figures [1|to [5|show a schematic diagram of SHIM, what SHIM is, what SHIM
can do, the relationship between SHIM and tools, and its use cases. The class diagram representation of the SHIM

XML schema from the top-level view [6] is presented in Appendix A.

+ Aninterface defined as an XML schema
— XML hardware description is written or generated according to the schema

« An extraction of hardware properties that matter to multicore tools

—  Processor core, number of cores, synchronization mechanism, inter-core communication channels, memory
system, NoC/interconnect, virtualization

* A HW model described from a SW point of view

+ NOT a functional model of hardware — it is descriptive

«  NOT a 100% description of hardware — only the properties that matter to
software

*  NOT a tool itself — tools are implemented by various vendors that use SHIM

Figure 2: What SHIM is

One characteristic of SHIM is that only important hardware information for software development is extracted rather
than a strict description of the hardware details. Therefore, the target accuracy for the performance estimation
using SHIM was approximately +20%. The basic principle underlying SHIM is an understanding of the hardware
features that affect software at the architectural design level. Therefore, once a program is designed for the specific
hardware described by SHIM, software architecture should not require any changes during the later stages of system
development. Compared with SHIM1.0, SHIM2.0 offers various improvements, such as pipeline memory architecture
and heterogeneity support. SHIM is expected to be used in performance estimation and automatic parallelization and

automatic configuration tools in operating systems and middleware.
2.2. Relationship between SHIM and LLVM-IR

The LLVM-IR instruction set [9] was used in SHIM for processor instructions rather than an instruction set for the
target processor. The use of LLVM-IR enhances the versatility of SHIM because LLVM-IR supports a wide variety
of programming languages and target hardware. Each LLVM-IR instruction is associated with the corresponding

performance information in SHIM. This performance information is used in conjunction with the LLVM toolchain to
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* Help tools roughly estimate SW performance

* Help tools configure themselves and/or auto-
generate the HW-specific configuration Ul

* Help configure device drivers or hardware
abstraction layer (HAL)

* NOT estimate SW performance with 100%
accuracy

+ NOT auto-generate HAL

Figure 3: What SHIM can

—
—
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Performance
analysis tool

Figure 4: SHIM and tools

estimate the software performance for an arbitrary processor without the use of processor-specific tools.
2.3. Related Work

Several studies [5l, [12] [13], 14}, [I7] have focused on performance estimation at the target instruction level, which does
not rely on SHIM. In general, the number of loop iterations and branch directions cannot be estimated easily using
static analysis, whereas adynamic analysis requires an actual machine or ISS, which is not desirable for model-level

designs. In this study, we do not discuss these issues but consider only SHIM-specific issues.

The possibility of performance estimation using SHIM was demonstrated in a preliminary study by using the JPEG
decoder program [4]. In this study, the estimation results of the SHIM and LLVM profilers were compared with the
simulation results from the cycle-accurate simulator of an actual processor. The estimation errors were maintained at
less than +20%.

In this study, the following equation was used to evaluate the SHIM performance:

Ezxecution Cycles = Z(EC(IRZ-) x Latency;), (1)
where FC(IR;) is the execution count of instruction I'R; in LLVM-IR obtained using the LLVM profiler and Latency;

denotes the execution cycles for instruction I R; stored in the SHIM.
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* Performance estimation
— Performance information is critical for most design-aid tools

— Examples are auto-parallelizing compilers, other parallelizing
tools, performance analysis tools, etc.

+ System configuration

— OS, middleware, and other runtime libraries need basic
architectural information to configure itself

— Other tools previously mentioned also need this

* Hardware modeling
— May serve to configure a HW model (i.e. simulator)
— May be useful for architecture exploration

Figure 5: SHIM use cases

Base Target

C : EMPTY(); C : uiz=uiy+uix
st.w  rll, 28[spl
st.w  rl0, 32[spl
(NO Instruction) Idw  28[spl, r11
Idw  32[spl, r10
add rll ,r10
stw  rl0,36[spl

Figure 6: Measurement of worst-case "add" cycle counts for SHIM

The execution cycles in SHIM were obtained using two methods: 1) extracting from the user manual of the target
processor or 2) calculating the difference in clock cycles between a program WITH the target instruction (Target
Program) and that WITHOUT it (Base Program) in an evaluation environment of the target processor (Fig. @ For
both methods, obtaining the cycle counts for all instructions requires a long time. In addition, these methods required

us to read numerous documents or to write several assembly programs.

To apply this method [4] for performance estimation in general software, two issues related to LLVM-IR, should be

considered.

Issuel Incurrence of register spilling penalties

Issue2 Generation of several types of target instruction sequences from a single LLVM-IR instruction

is related to the fact that whereas LLVM-IR assumes an infinite number of virtual registers, the finite number of
registers in actual hardware results in register spilling. Owing to the infinite virtual registers in LLVM-IR, there is
no register spill, and the data in the register will never be lost once it is placed in the register. However, in actual
hardware, the number of registers is finite, and it is possible that the data placed in a register will be lost because of
register spilling. Memory accesses generated in such cases are not reflected in the LLVM-IR programs. Such memory

access may cause cache misses. Handling such events is an important consideration in performance estimation using
SHIM.

is related to the fact that because LLVM-IR is an intermediate representation in compilers, multiple types of

assembly codes for the target processor may be generated from a single LLVM-IR instruction. Figure [7] shows an
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Assembler

add r10,r11 Id.w 0[r29],r10
add r10,r11
st.w r11,8[r29]
mov rll,ri2
add r10,r11

Id.w 4[r29],r11
addr10,ri1

st.w r10,12[r29]
st.w r11,8[r29]

LLVM-IR Inst
add

Id.w 0[r29],r11
Id.w 4[r29],r10
add r10,r11

Figure 7: Example of conversion from LLVM-IR instructions to assembly code

example of the conversion from an add instruction in LLVM-IR to the assembly code for RH850/E1M-S2 [15] from
Renesas Electronics Corporation. The converted assembler code can be a simple add instruction or an add instruction
using several types of register replacement processes. As different target codes can be generated from a single LLVM-IR
instruction, the probability of occurrence for each target code must be considered to calculate the latency accurately.
Considering such occurrence probabilities becomes more difficult with increasing hardware-architecture complexity and

the dependence of code generation on the optimizer.

Mikami et al. [II] proposed A) a method for estimating software performance using SHIM in the early stages of
model-based development, and B) a method for estimating the execution cycle of each LLVM-IR instruction stored in

SHIM for a processor using regression analysis when SHIM is created for the processor.

In Proposal A), the authors improved Eq. 7 using the following equation:

Execution Cycles = Z(EC(IRZ-) x Latency;)
Cache Access Times x Latency®
Memory Load Times x Latency®

Memory Store Times x Latency®

Overhead (2)

+ 4+ + 4

Issuel| was overcome in Eq. by adding the number of cache accesses, memory loads/stores, and measurement

overhead as parameters of the existing terms in Eq. .

To estimate the software performance, as shown in Fig.|8) EC(IR;) was measured using llvim-cov [I0], Cache Access Times,
Memory Load Times, and Memory Store Times were calculated using the results from llvm-cov and the given cache
miss, and the spilling ratios were registered. Ezecution Cycles can be estimated using Latencies in SHIM and the

system Querhead, if any.

They also proposed a method to estimate the performance values to be stored in SHIM using regression analysis as a

solution to overcome The flow and regression formulae for this method are shown in Fig. [
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Figure 9: SHIM value measurement flow

is overcome in this method by estimating the latency using a number of measurement programs.

With these proposals, they demonstrated the execution cycles of software within a target error of +20% using a
Raspberry Pi3 Model B+. However, the value of each LLVM-IR instruction latency was not realistic. In this study, we

propose an estimation method for a more realistic instruction latency.
2.4. Definition of Accuracy

In this section, we consider realistic LLVM-IR instruction latency. Here, we set the reference latency from the actual
hardware, and using the reference latency, the validity of the estimated latency was determined in later sections. In
this study, the reference latency values were determined using ARM CoreSight ETMR5 Technical Reference Manual of

Cortex-R5 [I]. As the latency values in the manual have ranges, the reference latency also has a range (Table .

With this reference latency, the requirements for SHIM performance values (LLVM-IR instruction latency values), are

given as follows:
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Table 1: Reference Latency

arithmetic mul div float fmul fdiv load store callret othersl others2
Min 1.0 1.0 4.0 1.0 2.0 20.0 1.0 1.0 1.0 1.0 1.0
Max 1.0 3.0 32.0 4.0 10.0 36.0 1.5 1.5 5.0 3.0 3.0

e More than zero

e Near around reference latency

Latency values that satisfy these requirements are realistic. In this study, we call these accurate latency values.
3. Proposed LLVM-IR Instruction Latency Estimation

In this section, an LLVM-IR instruction latency estimation method is proposed, which contains two estimation steps

using deep neural networks (DNNs).
3.1. Two Step DNN Estimation

The proposed method uses a two-step DNN approach as shown in Fig. where the first step inputs execution counts
(ECs) of LLVM-IR instructions and estimates ECs of the target assembler instructions, whereas the second inputs the
ECs of the target assembler instructions and estimates the latencies of LLVM-IR instructions. The input data of the

first step are prepared in a manner similar to the existing method shown in Fig. [0

Execution Execution Counts of Latency of
Counts of LLVM- Target Assembler Each LLVM-IR
IR Instructions Instructions Instruction

2nd Step

1st Step

Figure 10: Two Step Estimation

Here, we propose instruction variables (IVs) where a group of instructions with similar latencies is represented by
variable. In addition, LLVM-IR and target assembler instructions are associated with the IVs. Table [2] presents the
instruction relation table, which represents an example of the relationship among IVs, LLVM-IR, and target assembler

instructions.

Table 2: Instruction Relation Table

Instruction Variable LLVM-IR Assembler
arithmetic add, sub, shl,... add, sub, Isl,...

mul mul mul, smull
load load Idr, 1dp, 1drsw,..

The instruction relation table used in the experiments is presented in Table[6]in Appendix B, where an ARM Cortex-A53
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was utilized as the target device.

In our method, the execution counts and latencies were considered for each IV. EC(IV;) and EC(Total) denote the

execution counts for I'V; and total execution counts, respectively. Therefore, EC(Total) =", EC(IV;).

Our two-step estimation method is as follows (Fig. . In the first step, called execution count estimation in target
assembler (ECT), the DNN inputs a set of EC(IV,) into LLVM-IR and estimates EC(IV;) in the target assembler
for each IV;. In the second step, called the LLVM-IR instruction latency estimation (LIL), the DNN inputs a set of
EC(IV,) into the target assembler and estimates the instruction latencies of LLVM-IR.

Execution Counts of Execution Counts of Latency of Each
Program ‘ Instruction Variables Instruction Variables Instruction Variable
< in LLVM-IR in Target Assembler in LLVM-IR

mul : 5 cycle
load : 2 cycle

load : 5000---

Instruction LLVM-IR Target Assembler
Variables Instructions Instructions
arithmetic add,sub,shl,... add,sub,lsl,...
mul mul mul, smull
load load Idr,Idp,ldrsw...

Instruction Relation Table

Figure 11: Two Step Estimation using Instruction Relation Table

Use of target assembler instructions between two DNNs solves the issues of SHIM performance estimation described
above. In the target assembler instructions are generated by considering the number of registers that the target
device has. In DNN can deal with several types of target assembler instructions generated using a sequence of
LLVM-IR instructions.

These steps are described in detail in the following sections.
3.2. Execution Count Estimation in Target Assembler (ECT)

In ECT, the DNN inputs a set of EC(IV,) into LLVM-IR and estimate EC(IV;) in the target assembler for each I'V;.
To address this problem, we propose a method that includes the following two types of DNN estimations, where the
occurrence ratio (OR(IV;)) for instruction variable I'V; is defined as the ratio of EC(IV;) to EC(Total).

1. Total Count: Estimate EC(Total) in the target assembler

2. Occurrence Ratio: Estimate OR(IV;) in the target assembler

Using the total count and occurrence ratio, the summarized algorithm proposed later estimates the ECT by considering

the characteristics of each instruction variable.
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Table 3: Modified Instruction Variables (MIVs)
Instruction Variable | LLVM-IR Instruction

single add, sub, ashr, trunc, shl, Ishr, xor, icmp, fcmp, load, store

fow fadd, fsub, fptrunc, call, ret, sitofp, fptosi, sext, zext, bitcast,
fptoui, uitofp, ptrtoint, inttoptr, fpext

more mul, sdiv, udiv, srem, urem, fmul, fdiv, frem

others Other Instructions

It should be noted that to increase the amount of training data, we divide the training programs into basic blocks, and

the training processes are performed on a set of basic blocks.
3.2.1. Total Count

For the total count estimation, we propose a DNN that inputs a set of EC(MIV,) in LLVM-IR, which uses modified
instruction variables MTV's, and estimates the T/L ratio, which is the ratio of EC(Total) in the target assembler to
that in LLVM-IR. By multiplying the T/L ratio and EC(Total) in LLVM-IR, the total count (EC(Total) in the target
assembler) is calculated. To estimate the total count effectively, we propose modified instruction variables where each

LLVM-IR instruction is classified into four categories based on the number of target assembler instructions generated

(Table ).

In this classification, MIV single includes the instructions from which a single-target assembler instruction is generated.
One or more assembler instructions are generated from the MIV few, whereas multiple-target assembler instructions

are generated from MIV more.

The structure of the proposed DNN is illustrated as follows (Fig. :

Library Keras, Tensorflow

Tool Google Colaboratory

Model Functions API

# of Neurons in Input Layer 4 (# of modified instruction variables)

# of Neurons in Output Layer 1 (T/L ratio)

# of Inner Layers 24

# of Neurons in Inner Layers 8

Activating Function ReLU Function (Linear Function for Output Layer)
Place of Dropout Every 6 Layers

Ratio of Dropout 0.1

Learning Rate 0.0001

# of Epochs 500
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Output Layer

‘ Intermediate Layer ‘

Dropout(0.1)

Input Layer

single

few

more

other

8 nodes 8 nodes 8 nodes 8 nodes

Figure 12: DNN Structure for Total Count Estimation

3.2.2. occurrence Ratio

DNN estimating OR(IV;) for an instruction variable IV; in target assembler, inputs a set of OR(IV,) into LLVM-IR
(11 variables in Table @, and estimate OR(IV;) in the target assembler for a specified instruction variable I'V;. In
our method, ORs were calculated only for the arithmetic, load, and store IVs. For the other IVs, we devised other
techniques as described later because the amount of training data was small or the occurrence count was almost equal
between LLVM-IR and the target assembler codes.

The structure of the proposed DNN for the arithmetic instruction variable is as follows. (Fig. .

Library

Tool

Model

# of Neurons in Input Layer
# of Neurons in Output Layer
# of Inner Layers

# of Neurons in Inner Layers
Activating Function

Place of Dropout

Ratio of Dropout

Learning Rate

# of Epochs

Keras, Tensorflow

Google Colaboratory
Functions API

11 (# of instruction variables)
1 (occurrence ratio)

3

8,8,5

ReLU Function (Linear Function for Output Layer)
Between 2nd and 3rd Layers
0.2

0.001

1000

The structure of the proposed DNN for the load instruction variable is as follows: (Fig. :

99



International Journal of Computer and Technology Vol 23 (2023) ISSN: 2277-3061 https://rajpub.com/index.php/ijct

Input Layer Intermediate Layer Output Layer

Dropout(0.2)

,A\m /
Occurrence Ratio of “\" 4" Occurrence Ratio of
Instruction Variables in . A’A l‘\ arithmetic in Target
LLVM-IR (11 nodes) . "/ V‘VVV ‘ Assembler

A\\” "’ 1 node

V,“\v V["

8 nodes 8 nodes 5 nodes

11 nodes

Figure 13: DNN Structure in Occurrence Ratio Estimation for Arithmetic

Library Keras, Tensorflow

Tool Google Colaboratory

Model Functions API

# of Neurons in Input Layer 11 (# of instruction variables)

# of Neurons in Output Layer 1 (occurrence ratio)

# of Inner Layers 4

# of Neurons in Inner Layers 16

Activating Function ReLU Function (Linear Function for Output Layer)
Learning Rate 0.001

# of Epochs 1000

The structure of the proposed DNN for the store instruction variable is as follows: (Fig. [L5)):

Library Keras, Tensorflow

Tool Google Colaboratory

Model Functions API

# of Neurons in Input Layer 11 (# of instruction variables)
# of Neurons in Output Layer 1 (occurrence ratio)

# of Inner Layers 1

# of Neurons in Inner Layers 4
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» Input Layer ’ Intermediate Layer ‘ ‘ Output Layer ‘

Y “\ “
A\\'llb A\\'l 'l/b
\ W/ ‘\' l’

\ [V \ A'A \
‘ ‘ .| 4}(3, ¢; I;C

A\\ I'A I'A A\\

RORHN

11 nodes
16 nodes 16 nodes 16 nodes 16 nodes

Occurrence Ratio of
Instruction Variables in
LLVM-IR (11 nodes)

Occurrence Ratio of
load in Target
Assembler

Figure 14: DNN Structure in Occurence Ratio Estimation for load

Activating Function ReLU Function (Linear Function for Output Layer)
Learning Rate 0.001
# of Epochs 1000
T .1 Intermediate
Input Layer Layer Output Layer
Occurrence Ratio of Occurrence Ratio of
Instruction Variables in store in Target
LLVM-IR (11 nOdeS) . Assembler
1 node
11 nodes
4 nodes

Figure 15: DNN Structure in Occurrence Ratio Estimation for store

3.2.3. Summarized Algorithm

In this section, we propose a summarized algorithm to estimate ECT considering total count, occurrence ratio, and

characteristics of each instruction variable.

The summarized algorithm estimates EC(IV;) for each IV; in the target assembler as follows:

1. For IVs arithmetic, load, and store, EC(IV;) in target assembler is estimated by multiplying the two estimated
values: Total Count EC(Total) and Occurrence Ratio OR(IV;).
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2. For IVs fmul, fdiv, and callret, EC'(IV;) in target assembler is set to that in LLVM-IR.

3. For IVs mul, div, float, and othersl, EC(IV;) in target assembler is estimated by multiplying estimated Total
Count EC(Total) in target assembler and actual occurrence ratio OR(IV;) in LLVM-IR.

4. EC(IV;) for IV others2 is calculated by subtracting [1} 2 and [3] from Total Count EC(Total).

First, for IVs arithmetic, load, and store, because occurrence counts are relatively large and DNN estimation is effective,
the summarized algorithm estimates FC(IV;) by multiplying the two estimated values: total count EC(Total), and
occurrence ratio OR(IV;). Next, for IVs fmul, fdiv, and callret, the occurrence counts in the target assembler are almost
equal to those in LLVM-IR. The summarized algorithm uses the occurrence counts in LLVM-IR. For IVs mul, div, float,
and othersl, because occurrence counts are relatively large and the occurrence ratio in LLVM-IR was considered a
good estimate. The summarized algorithm estimates the execution count by multiplying the estimated total count
EC(Total) in the target assembler and the actual occurrence ratio OR(IV;) in LLVM-IR.

3.3. LLVM-IR Instruction Latency Estimation (LIL)

Second, we propose another DNN that inputs the results of the first step, that is a set of EC(IV,) in the target
assembler and outputs LLVM-IR instruction latency.

Because this is a regression problem, supervised learning is generally used. However, in our case, we could not prepare
the training data for supervised learning because each training data point should include correct outputs, that is a set

of correct LLVM-IR instruction latencies that are unknown.

To address this problem, we propose a loss function that enables supervised learning. Although measuring LLVM-IR
instruction latency is difficult in an evaluation environment with a target device, it may not be difficult to obtain the
actual execution cycles for programs in the environment. Therefore, a loss function can be used to exploit the error

between the actual and estimated execution cycles using a set of LLVM-IR instruction latency outputs from DNN.

Based on these observations, loss is defined as follows:

1 cycle; — p_cycle;
loss — — J — 72
059 n ZJ:( cycle; ) 3)
p_cycle; =Y  EC(IV;); X i j, (4)

where n is the number of programs and cycle; is the number of execution cycles of program j measured on the target
device. p_cycle; is the execution cycle of program j estimated using Eq. , where EC(IV;); is EC(IV;) for program
j obtained using a coverage tool for LLVM-IR such as llvm-cov and g; ; is the latency of the I'V; output from DNN for

program j. The loss function is considered the mean square error.

The DNN structure for LIL estimation is shown as follows (Fig. :

Library Keras, Tensorflow

Tool Google Colaboratory

Model Subclassing API

# of Neurons in Input Layer 11 (# of instruction variables)

62



International Journal of Computer and Technology Vol 23 (2023) ISSN: 2277-3061 https://rajpub.com/index.php/ijct

# of Neurons in Output Layer 11 (# of instruction variables)

# of Inner Layers 4

# of Neurons in Inner Layers 64

Activating Function ReLU Function (Linear Function for Output Layer)
Place of Dropout Between 3rd and 4th Layers

Ratio of Dropout 0.2

Learning Rate 0.001

# of Epochs 1000

In our implementation, the input values are normalized with an average of zero and a variance of one, whereas the
outputs are LLVM-IR instruction latencies for the instruction variables. The Subclassing API in TensorFlow 2.0 is
utilized because its high programmability is appropriate for realizing a loss function. To learn larger latency of IVs
such as fmul and fdiv, a larger number of neurons was used in our network. The use of dropout prevents overlearning,

and the ReLU function is effective for estimating the latency that has a positive value.

Input Layer Intermediate Layer ‘ Output Layer

Dropout(0.2)

\
. \\'“ﬂ\\\"l/’“ 47 4// l/~
‘\' M 'L“i'. ln< “ I ’
v\ N v v :
B85 5 S
‘o " A ,

64 nodes 64 nodes 64 nodes 64 nodes

Latency of
Instruction
Variables in
LLVM-IR

Execution Counts
of Instruction
Variables in
Target Assembler

11 nodes 11 nodes

Figure 16: DNN Structure for LIL Estimation

Notably, with the proposed DNN, the LLVM-IR instruction latency for I'V; is the output as g; ; in Eq. @, which
means that the values also depend on the program j. Therefore, we use the last values in the training phase as the

estimated latency, and the values are assumed to be written in SHIM.
3.4. Software Performance Evaluation with SHIM

Using the ECT and LIL methods described above, we proposed a software performance estimation method, which

estimates the execution cycles of a program using Eq. .

Execution Cycles = Z(EC(IVZ-) x Latency;), (5)

i

63



International Journal of Computer and Technology Vol 23 (2023) ISSN: 2277-3061 https://rajpub.com/index.php/ijct

where EC(IV;) and Latency; are the execution counts in LLVM-IR and LIL, respectively. Note that Eq. is almost
equal to Eq. .

4. Experiments
In this section, we evaluate the proposed method introduced in the previous sections for the Raspberry Pi3 Model B+.
4.1. Target Hardware

The target hardware in our experiments was a Raspberry Pi3 Model B+ with the following basic specifications.

CPU Cortex-Ab53

Number of cores 4 cores

CPU clock 1.4 GHz
Memory 1 GB
Cache L1 Cache 32 KB

L2 Cache 512 KB

0OS Linux ver 4.14.68

4.2. Measurement Programs

We prepared 40 programs in C language for training (Table . The programs were designed to increase the variations
in LLVM-IR instructions.

4.3. ECT Estimation
In this section, we evaluate the first step of our method, that is, ECT estimation.
4.3.1. Total Count

First, we evaluate the total count estimation in the first step. In these experiments, we used 410 basic blocks for
training generated from the 40 programs in Table |4 After the training phase, we estimated EC(Total) in the target

assembler for 40 programs and calculated the error ratio using Eq. @

(Actual Execution Count) — (Estimated Execution count)
(Actual Execution Count)

Error Ratio =

Figure [17] presents a histogram of the error ratios.

An important factor in the estimation of total count is the absence of outliers, in addition to high accuracy. Figure
shows that 30 of the 40 programs exhibited an error ratio of +20%. The mean absolute error ratio was 12.35%. No
outliers were observed, and errors of this magnitude were considered to have little effect on latency estimation. For
programs that fall outside of the +20% range, we confirmed that the ratio of EC(Total) in the target assembler to that
in LLVM-IR was far from 1.0. Specifically, programs with a factor of less than 0.8 or greater than 1.2 are included in
+20%. Therefore, there is room for improvement in the estimation of the total count for programs with large differences
in EC(Total) between LLVM-IR and the assembler.
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Table 4: 36 Programs for Training and Their Basic Blocks

Program | # of Basic Blocks

BubbleSort.c 9 RadixConversion.c
CelsiustoFahren.c 7 RadixConversion F.c
EuclideanAlgorithm.c | 13 Selectionsort.c 11
Exchange.c 6 SeriesSum.c 2
Exchange F.c 6 Shellsort.c 23
fadd.c 3 SimpleFilterProcess.c
fcmp.c 2 sum.c

Fibonacci.c 5 Insertionsort.c 14
Fibonacci F.c 5 Functions2.c 3
fmul.c 3 Functions3.c
FunctionCallTest.c 9 Functionsd.c 11
GaussianElimination.c | 21 Functionsb.c 14
hanoi.c 5 Functions6.c

MergeSort.c 21 Functions7.c
NapierNumber.c 6 Functions8.c 14
NumberPlace.c 33 Functions9.c )
PerfectNumber.c Functions10.c 17
PerfectNumber F.c Functionsll.c 14
PrimeNumber.c 12 Functionsl2.c 19
QuickSort.c 14 Functions13.c 17
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0o

Number of Times
()]

-40

-30

0

20 30 40 40<

Error Ratio (%)

Figure 17: Histogram of Error Ratio for Total Count
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4.3.2. Occurrence Ratio

Next, the estimation of the occurrence ratio was evaluated for IVs arithmetic, load, and store. The DNN inputs a set
of OR(IV,)s into the basic blocks of LLVM-IR codes from the 40 programs. To evaluate the training, we estimated the

occurrence ratios in the target assembler codes from 40 programs and calculated the error ratio using Eq. .

(Actual Occureance Ratio) — (Estimated Occureance Ratio)

E Ratio =
rror fvato (Actual Occureance Ratio)

Figures [I8] [[9] and [20] show histograms of the error ratios for IVs arithmetic, load, and store, respectively.
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Figure 18: Occurence Ratio for arithmetic
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Figure 19: Occurence Ratio for load

In the arithmetic estimation results, 28 of the 40 programs are within an error ratio of £20%. In particular, the
interval 0% ~ 10% is the largest. However, seven outliers are also observed. It is confirmed for these programs that
EC(arithmetic) in the assembler code differs by approximately £20% from EC(arithmetic) in the LLVM-IR code.
The other programs differ by approximately +8%, indicating that the larger the difference is between EC'(arithmetic)s
of the LLVM-IR and the target assembler, the larger is the error in the estimation results.

In estimating the load, 36 of the 40 programs were within an error ratio of £20%. As there are more load instructions

than arithmetic instructions, more accurate results are obtained than the arithmetic results. Programs that fall between
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Figure 20: Occurence Ratio for store

30% and 40% are those in which LLVM-IR and assembler differ in the proportion of occurrences as is the case in

arithmetic.

For store estimation, 25 of the 40 programs were within an error ratio of +20%. However, the number of programs

that fell within the target range was the lowest. This may be because the number of store instructions is the smallest.
4.3.3. ECT Estimation

ECTs for 40 programs were estimated with the summarized algorithm using the total count and occurrence ratio, and
bar graphs that compare the estimated and actual EC(Total) and EC(IV,) are shown. Figure [21| shows the results for

the programs with better estimations, whereas Fig. 22 shows the poorest results.

In Fig. the estimated EC(Total) and EC(IV,) are similar to the actual values. Because these programs contain
more than a thousand instructions, larger programs may provide a better estimation. In SimpleFilterProcess.c and
SeriesSum.c, the div instruction appears in the estimated but not in the actual results. Because the div instructions
appear in LLVM-IR code for these programs, DNN estimates that it should also appear in the assembler code. It is

believed that the div instruction has been replaced with different instructions owing to compiler optimization.

Figure [22[ shows the programs for which EC(Total) or EC(IV,) differed significantly between the estimated and actual
values. For Functions9.c, OR(IV,) is close but EC(Total) differed significantly between the estimated and actual
values. For this program, the actual execution counts in the assembler were lower than those in LLVM-IR. It seems that
this is the reason why the difference was larger than that in the other programs. In contrast, in fcmp.c, the EC(Total)
for the estimated and actual values are close, but the differences in OR(IV,) are significant. It is observed that the
DNN estimates fewer arithmetic instructions and more othersl instructions. fcmp.c has many operations for assigning
comparison results (Boolean values) to variables. In LLVM-IR, these operations are implemented as cast operations
after comparison, while the assembler does not cast. This seems to be the reason why othersl instructions are smaller

in the estimation.

Good results were obtained when total count was estimated to be close to the actual count.
4.4. LIL Estimation

In this section, the second step, LIL estimation, is evaluated.

4.4.1. Experiments and Results
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Figure 21: ECT Estimation (Better Results)
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Figure 22: ECT Estimation (Worse Results)
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In these experiments, 36 of 40 programs were used for training or regression analysis, and the others, Functionsll.c,

Functions3.c, Functionsd.c, and Selectionsort.c, are utilized for evaluation. We evaluated three methods as follows:

Regression: Existing method [IT]

Proposed: Proposed two-step DNN method, in which the inputs of the second step (LIL) are the outputs of the
first phase (ECT), that is, the estimated EC(IV,) in target assembler

e LIL (Assembler): Method using only DNN proposed for LIL, which inputs actual EC(IV,) in the target assembler

Reference Latency: Reference latency (Table

Table 5] lists the results of LLVM-IR instruction latency estimation, where the rows and columns represent the methods
and IVs, respectively. For IVs, arith, othl, and oth2 represent arithmetic, othersl, and others2, respectively. Fig. 23]

depicts them, where three marks on the vertical bar for each IV represent maximum, average, and minimum reference

latencies from the top of the bar, respectively.

Table 5: LLVM-IR Instruction Latency Estimation Results

arith mul div float fmul fdiv load store callret  othl oth2

Regression 1.63 0 - 4.56 17.48 - 2.69 0 3.80 9.49 0.20
Proposed 1.17 0.95 1.41 4.44 10.48 13.28 1.56 1.07 2.82 0.91 1.22
LIL (Assembler) 1.04 1.12 5.54 7.09 23.56 31.36 1.06 1.01 7.18 1.03 1.00
Reference Latency | 1~1 1~3 4~32 1~4 2~10 20~36 1~15 1~15 1~5 1~3 1~3
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Figure 23: LLVM-IR Instruction Latency Estimation Results
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In addition, Fig. [24| shows the results of the software performance evaluation calculated using Eq. described in the

previous section, using the LLVM-IR latency estimated using each method.

Error for Software Performance Estimation

40%

30% 30.0% 23.4%

R  W— 193% s 14.4%.
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M Regression M Proposed LIL (Assembler)

Figure 24: Performance Estimation for Evaluation Software

To compare the proposed method with existing methods [I1], we compare the regression and proposed methods in
Table [5] and Fig. 23]

Some of the latency values estimated using the regression method were zero, whereas the values in the proposed method
are near the reference latency range. Therefore, our method is considered to be much more accurate than the existing

methods, in terms of LLVM-IR instruction latency estimation.

The software performance estimates are shown in Fig.[24 The proposed method estimated errors outside the range of
+20%, although the error remains within +30%. To show the reason for the larger error compared to the existing
method, we compare the case of LIL (assembler) in Fig. where the second step of DNN inputs actual EC(IV,).
Because the estimation error of the LIL (assembler) is within +20% and is significantly better than that of the regression

method, the cause of this large error is the first step of DNN. This issue should be addressed in future studies.
Conclusions

In this study, we proposed a method using deep neural networks to estimate LLVM-IR instruction latency for SHIM
XML generation used for model-based parallelization and other applications. The proposed method uses a two-step
DNN. As a first step, we propose a method to estimate the execution counts of the assembler instructions using the
LLVM-IR instructions as the input. To avoid outliers, we first estimate the total execution counts of the assembler
instructions and then combine it with the estimated instruction occurrence ratio. For the execution count estimation,
we constructed a DNN and achieved a target error ratio of +20% in 30 of the 40 evaluation programs, with no outliers.
The error ratio target was achieved in the instruction occurrence ratio estimation for approximately 73% of all the

instructions by devising an estimation method tailored to the characteristics of each instruction group.

In the second step, we propose another DNN to estimate LLVM-IR instruction latency from a set of execution counts

for the target assembler instructions in which we devise a new loss function

Using a Raspberry Pi3 Model B+ as the target hardware, we evaluated our method and compared it with existing

methods. From the experimental results, it can be observed that our proposed method performs much better than
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existing methods for LLVM-IR latency estimation, although the software performance estimation using our method

was worse than that of the existing method.

Since software performance was much better estimated when the actual assembler execution counts were input into the

second step of DNNs, we plan to improve the first step of DNNs in future studies.
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Appendix A. Top-level class diagram of SHIM XML
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o
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— | «XSDattribute»
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0.* 1.%| + operatingPointRef: string
+ power: nonNegativelnteger

+  powerUnit: PowerUnitType

+  name: string
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+  PowerConsumerRef: string [1..-1]

«XSDcomplexType»
«XSDcomplexTyper ystemConfigurationFile
SHIM2 i o
0.%|+ id:iD
+ name: string
+ srcstring
PowerConfi
\ «XSDcomplexTypen
0..#| SHIM2.0::PowerConfigurationFile

«XSDattribute»

+ id:ID

+ name: string

+ srestring

Abstractinstruction
«XSDcomplexTypen
aXSDcomplexTypes SHIM2.0::Instruction
«XSDcomplexType» SHIM2.0::FunctionalUnit " " "
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SHIM2.0:FunctionalUnitSet FunctionalUnit + ‘cpmestion: Sig
«xSDattributes B
148 e 0.*|+ outputBitWidth: nonNegativeinteger

+ supportedSignedness: SignednessType
+ o ingType
+  immediateBitWidth: nonNegativelnteger
+ isEmulated: boolean
+ inputPreserved: boolean

Custominstruction Abstractinstruction

«XsDcomplexType»
0.* SHIM2.0::Custominstruction

Figure 25: Class diagram representation of the SHIM XML schema (top-level elements) [6]
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Appendix B. Instruction Relation Table

Table 6: Instruction Relation Table (Cortex-A53)

Instruction Variable LLVM-IR | Assembler
arithmetic add, sub, ashr, shl, xor, icmp, add, sub, cmp, lsr,
asr, Isl, neg, cset, and
mul mul mul, smull
div sdiv, udiv, srem, urem div, udiv, sdiv
float fadd, fsub, fcmp fadd, fcmp, fcmpe, fneg, fsub
fmul fmul fmul
fdiv fdiv, frem fdiv
load load Idr, 1dp, 1drsw, ldrb
store store str, stp, strb
callret call, ret ret, bl
sitofp, fptosi, sext, zext,
others] bitcast, fptoui, uitofp, scvtf, scvtzs, sxtw,
ptrtoint, inttoptr, fpext, fevtzs, fevt, 1drsw, cset
trunc, fptrunc
getelementptr, alloca, phi,
br, indirectbr, invoke,
resume, unrechable, b, ble, blt, bgt, bne, beq,
others? extractelement, insertelement, bge, bhi, bmi, bpl, csel,
shuffievector, extractvalue, adrp, nop, csneg, mov,
insertvalue, fence, cmpxchg, fmov, movk, mvn
atomicrmw, select, va_arg,
landingpad, switch
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