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Abstract

The increasing scale and complexity of embedded systems and the use of multi-many-core processors have resulted in
a corresponding increase in the demand for software development with a high degree of parallelism. The degree of
parallelism in software and the accuracy of performance estimation in the early design stages of model-based development
can be improved by estimating performance of blocks in models and utilizing the estimate for parallelization. Research
is therefore being performed on a software performance estimation technique that uses the IEEE2804-2019 hardware
feature description called software-hardware interface for multi-many-core (SHIM). In SHIM, each LLVM-IR instruction
is associated with the execution cycle of the target processor. Because several types of assembly instruction sequences
for the target processor are generated from a given LLVM-IR instruction, it is not easy to estimate the number of
execution cycles. In this study, we propose a regression analysis method to estimate the execution cycles for each
LLVM-IR instruction. It is observed that our method estimated the execution cycles within the target error of +£20%
in experiments using a Raspberry Pi3 Model B+.

Keywords: SHIM, embedded system, multi-many-core, estimation
1. Introduction

The increasing scale and complexity of embedded systems in recent years has resulted in a corresponding increase
in hardware performance requirements. Single-core processors have been used to meet these requirements to date,
but their use has become problematic because of limited performance and increased power consumption and heat

generation. Therefore, the use of multi-many-core processors to improve performance is expected.

In addition, the man-hours and work costs for control system design and development are increasing because of the
increased scale and complexity of control systems. This has led to the popularity of model-based development to reduce
development time and human errors. In model-based development, the control system is represented by an abstract

model and the design is performed on the model.

Owing to these factors, there is a need for parallelization to support multi-many-core model-based development.
One approach for parallelization is the code-based approach, in which sequential code generated from the model is
parallelized. Because parallelization is not considered during the design of the model in this approach, the degree of
parallelism cannot be improved easily. In addition, if the performance target is not met after parallelization, the system

must be redesigned from scratch, resulting in rework costs.

Another approach for parallelization is the model-based approach [3]. In this approach, parallelization is considered

during the system design stage to achieve a high degree of parallelism. Moreover, parallel code instead of sequential
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code is automatically generated from the model.

However, to increase parallelism, it is necessary to consider the processing time of each block in the model for load

balancing. To achieve this, it is crucial to devise a method for estimating the performance of the model design.

Performance estimation in model-based parallelization should not require an actual machine or an instruction set
simulator (ISS), and the features of the actual machine should be considered during the estimation. This is because for
embedded systems, it is not easy to use the development environment for the target processor in model-level design,

especially in the early design phase.

To address these issues, research is being conducted on a performance estimation method based on the IEEE 2804-2019
hardware abstraction description [6], called software-hardware interface for multi-many-core (SHIM), which is an XML

file describing the hardware features as parameters.

In SHIM, in order to make tools using SHIM target-independent, the LLVM-IR instruction set [8] from the LLVM
project [7] is used for the processor instructions instead of the instruction set of the target processor. The use of
LLVM-IR has two issues for performance estimation. 1) Since the LLVM-IR assumes infinite number of virtual registers,

there are no register spilling in LLVM-IR code. 2) Several code sequences of the target code are generated from an
LLVM-IR instruction.

In this study, to overcome these issues, we propose A) a method for software performance estimation using SHIM and
B) a method for performance estimation of each LLVM-IR instruction to be stored in SHIM based on a regression
analysis. In design flow, first, SHIM is created for the target processor using the proposal B) with the target-dependent
environment. Then, performance of a system is estimated with the created SHIM using the proposal A) with the
target-independent tools. The key contribution of this study is a reduction in the cost of producing SHIM so as to
facilitate the application of SHIM to performance estimation. A case study on a Raspberry Pi3 Model B+ shows that
the error of the estimated performance with SHIM is within the target value of +20%.

The rest of this paper is organized as follows: Section 2 provides a brief background of related work and previous
studies on performance estimation with SHIM. Section 3 proposes the two methods related to performance estimation
with SHIM. Section 4 describes a case study for the performance estimation of LLVM-IR instructions to be stored in
SHIM for a Raspberry Pi3 Model B+. Section 5 presents an evaluation of the software performance estimation with

SHIM described in Section 4. Section 6 concludes the study and discusses future work.
2. Performance Estimation with SHIM
2.1. SHIM [6]

The widespread use of multi-many-core processors has led to the emergence of architectures with a variety of
characteristics from which the user has to select the optimal processor for the specific application. This has led to an
increased burden on vendors of tools for the analysis, optimization, automatic parallelization, and real-time operating
systems, who are forced to deal with a wide variety of processors. System developers require tools with high portability
and quality to efficiently use a wide variety of multicore devices. However, tool development requires the reading of

voluminous manuals and an understanding of the characteristics of each processor.

To address this issue, the Multicore Association [2] has developed an international standard called SHIM (Software-
Hardware Interface for Multi-many-core) to support the development of tools for multicore devices. SHIM2.0 was
standardized by IEEE in 2019 [6]. Figs. [1] to [5] show a schematic diagram of SHIM, what SHIM is, what SHIM can,

relationship between SHIM and tools, and its use cases. In addition, the class diagram representation of the SHIM
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Figure 1: SHIM schematic

XML schema at top-level view [6] is shown in appendix.

+ Aninterface defined as an XML schema
— XML hardware description is written or generated according to the schema

« An extraction of hardware properties that matter to multicore tools

—  Processor core, number of cores, synchronization mechanism, inter-core communication channels, memory
system, NoC/interconnect, virtualization

* A HW model described from a SW point of view

+ NOT a functional model of hardware — it is descriptive

«  NOT a 100% description of hardware — only the properties that matter to
software

*  NOT a tool itself — tools are implemented by various vendors that use SHIM

Figure 2: What SHIM is

A characteristic of SHIM is that only the important hardware information for software development are extracted
rather than a strict description of the hardware details. Therefore, the target accuracy for performance estimation
using SHIM is approximately +20%. The basic principle behind SHIM is an understanding of the hardware features
that affect software at the architectural design level. Therefore, once a program has been designed for a specific
hardware described by SHIM, the software architecture should not require any changes during the later stages of system
development. Compared to SHIM1.0, SHIM2.0 offers various improvements, such as pipeline, memory architecture, and
heterogeneity support. It is expected that SHIM will be used in performance estimation and automatic parallelization

tools, as well as in automatic configuration tools in OSs and middleware.
2.2. Relationship between SHIM and LLVM-IR

The LLVM-IR instruction set [§] is used in SHIM for the processor instructions instead of the instruction set of the
target processor. The use of LLVM-IR enhances the versatility of SHIM because LLVM-IR supports a wide variety
of programming languages and target hardwares. Each LLVM-IR instruction is associated with its corresponding
performance information in SHIM. This performance information is used in conjunction with the LLVM tool chain to

estimate software performance for an arbitrary processor without the use of processor-specific tools.
2.3. Related Work

There are many studies [5], [0} 14} [T}, [I5] on performance estimation at the target instruction level that do not rely on
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Figure 3: What SHIM can

—
—
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Figure 4: SHIM and tools

SHIM. In general, the number of loop iterations and branch directions cannot be easily estimated in static analysis,
whereas dynamic analysis requires an actual machine or ISS, which is not desirable for model-level design. In this

study, we do not discuss these issues but consider only the SHIM-specific issues.

The possibility of performance estimation with SHIM has been demonstrated in a preliminary study using a JPEG
decoder program [4]. In this study, the estimation results from SHIM and the LLVM profilers were compared with the
simulation results from a cycle-accurate simulator of the actual processor. The estimation errors were maintained at
less than +20%.

In this study, the following equation was used to evaluate the performance estimation of SHIM:

Execution Cycles = Z(IR Execution Times; X Latency;), (1)
where IR Execution Times; is the execution count of Instruction; in LLVM-IR obtained from the LLVM profiler and

Latency; is the number of execution cycles for Instruction; stored in SHIM.

The execution cycles in SHIM were obtained with two methods: 1) extracting from the user manual of the target
processor, or 2) calculating difference of clock cycles between a program WITH the target instruction (Target Program)
and that WITHOUT it (Base Program) on an evaluation environment of the target processor (Figlf). For both

methods, it takes very long time to obtain cycle counts of all instructions. In addition, these methods force us to read
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* Performance estimation
— Performance information is critical for most design-aid tools
— Examples are auto-parallelizing compilers, other parallelizing
tools, performance analysis tools, etc.
+ System configuration

— OS, middleware, and other runtime libraries need basic
architectural information to configure itself

— Other tools previously mentioned also need this

* Hardware modeling
— May serve to configure a HW model (i.e. simulator)
— May be useful for architecture exploration

Figure 5: SHIM use cases

Base Target

C : EMPTY(); C : uiz=uiy+uix
st.w  rll, 28[spl
st.w  rl0, 32[spl
(NO Instruction) Idw  28[spl, r11
Idw  32[spl, r10
add rll ,r10
stw  rl0,36[spl

Figure 6: Measurement of worst-case "add" cycle counts for SHIM

voluminous amount of documents or write a number of assembly programs.

In order to apply the method [4] for performance estimation to general software, two issues related to LLVM-IR must

be considered:

Issuel Incurrence of register spilling penalties

Issue2 Generation of several types of target instruction sequences from a single LLVM-IR instruction

is related to the fact that whereas LLVM-IR assumes an infinite number of virtual registers, the finite number of
registers in actual hardware results in register spilling. Because of the infinite virtual registers in LLVM-IR, there is no
register spill and data in a register will never be lost once it is placed in the register. However, in actual hardware, the
number of registers is finite, and it is possible for the data placed in a register to be lost because of register spilling.
The memory accesses that are generated in such cases are not reflected in the LLVM-IR programs. Such memory
accesses may incur cache miss penalties. The handling of such events is an important consideration in performance
estimation with SHIM.

is related to the fact that because LLVM-IR is an intermediate representation in compilers, multiple types of
assembly code for the target processor may be generated from a single LLVM-IR instruction. Fig. [7] shows an example
of the conversion from an add instruction in LLVM-IR to the assembly code for the RH850/E1M-S2 [12] from Renesas
Electronics Corporation. The converted assembler code can be a simple add instruction or an add instruction with
several types of register replacement processes. Because different target codes can be generated from a single LLVM-IR

instruction, the probability of occurrence for each target code must be considered to calculate the latency accurately.
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Figure 7: Example of conversion from LLVM-IR instructions to assembly code
The consideration of such occurrence probabilities becomes more difficult with the increase in hardware architecture
complexity and the dependence of code generation on the optimizer.
3. Proposed Performance Estimation

In this section, we propose A) a method for software performance estimation using SHIM for early stage of model-based
development, and B) a method for estimating the execution cycle of each LLVM-IR instruction to be stored in SHIM

for a processor using regression analysis when SHIM is created for the processor.

In the proposal A), it is assumed that a model-based development tool can generate code for the model to be estimated,
from which coverage information can be obtained by llvim-cov [9]. In addition, we assume that the cache miss and
register spill ratios are known for the software generated from the model to be estimated. This assumption is usually
true for embedded control systems such as automotive powertrain, where these ratios can be predicted from current
design because of the use of iterative design. In the proposal B), we assume that a measuring method is available for
the target processor, with which several types of values such as execution cycles can be measured for a number of

programs.
These assumptions are summarized as follows:
e The coverage information from the llvm-cov tool [9] is available for the estimated software generated from the
model.
e The cache miss ratio and register spill ratio are known for the estimated software generated from the model.
e A measuring method for the cycle counts of the program is available for the target processor at the SHIM creation.
It is important to note that provided that the assumptions hold true, designers can estimate the performance of software

using SHIM files with a target-independent tool once the SHIM files are created for the candidate processors and their

evaluation environments by vendors.
3.1. Software Performance Estimation

In this subsection, equation is improved to give the following equation:
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Figure 8: Performance estimation flow

Execution Cycles = Z(IR Execution Times; X Latency;)
i

Cache Access Times x Latency®

Memory Load Times x Latency”

Memory Store Times X Latencys

Overhead (2)

+ o+ o+ o+

Issuel|is overcome in equation by adding the number of cache accesses, memory loads/stores, and measurement

overhead as parameters to the existing terms in equation .

To estimate software performance, as is shown in Fig. [8] IR FExecution Times; is measured using llvm-cov, and
Cache Access Times, Memory Load Times, and Memory Store Times are calculated using the results from llvm-cov
and the given cache miss and register spilling ratios. Fxecution Cycles can be estimated using Latencies in SHIM

and the system Owerhead, if any.
3.2. Execution Cycle Estimation by Regression Analysis

In this subsection, we propose a method to estimate the performance values to be stored in SHIM by using regression
analysis as a solution to overcome The flow and regression formula of the proposed method are shown in Fig. [
It is important to note that the regression formula in Fig. [9]is the same as that in equation (2) in Fig.[8} In the formula,
the variables are Latencies and Overhead, and other values are obtained from llvm-cov or the evaluation environment

of the target processor.

The measurement flow is as follows. First, multiple measurement programs are prepared. Next, Cache Access Times,
Memory Load Times, Memory Store Times, and Exection Cycles are measured for the measurement programs in
the evaluation environment of the target processor (measurement phase). The IR Execution Times;s are obtained
from these measurement programs using llvin-cov (simulation phase). The regression formula is solved (regression

analysis phase) to calculate Latencies and Overhead.

is therefore overcome in this method by estimating the latency using a number of measurement programs. It

should be noted that the same set of measurement programs can be used to measure different hardware.

As a result, with our proposed method, the estimation cost of execution cycles for each LLVM-IR, instruction to be stored
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Figure 9: SHIM value measurement flow

in SHIM is reduced compared with previous methods where these values are obtained by extracting from voluminous
amount of documents or writing a number of assembly programs. In addition, acceracy of software performance

estimation should be improved, which is shown in the following sections.
4. Case Study

In this section, we describe each step to estimate the SHIM performance values introduced in the previous section
through a case study on a Raspberry Pi3 Model B+. The tools described in this section are openly available on the
OpenSHIM website [13].

4.1. Target Hardware

The target hardware in this case study is a Raspberry Pi3 Model B+ with the following basic specifications.

CPU Cortex-Ab3

Number of cores 4 cores

CPU clock 1.4 GHz
Memory 1 GB
Cache L1 Cache 32 KB

L2 Cache 512 KB

(O] Linux ver 4.14.68

4.2. Measurement Programs

We first prepared 36 programs in C language for evaluation. The programs were designed to increase variants of
LLVM-IR instructions.

We also set a lower limit for the number of execution cycles because the overhead has a greater effect on measurement
programs with fewer execution cycles in our experimental environment. The lower limit was set to 10,000 cycles. For
measurement programs in which the number of execution cycles was originally less than 10,000, the lower limit was

exceeded by iterating the process in the main function.
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4.3. Measurement Phase

In the measurement phase, the compiled measurement programs were executed to obtain the numbers of execution
cycles, cache accesses, and memory loads and stores. These values were obtained using the PMU in the ARM processor

on the Raspberry Pi3 Model B+. Each value was obtained through the following means:

Cache Access Times

Actual measurement.

Memory Load Times
Calculated using equation (3).

Memory Store Times
Calculated using equation .

Overhead

Assumed to occur once each time and put into the regression equation as a constant term.

Memory Load Times = Load Times x Cache Miss Rate (3)

Memory Write Times = Store Times x Cache Miss Rate (4)

4.4. Simulation Phase

In the simulation phase, the number of LLVM-IR instructions for the measurement programs were obtained using

llvm-cov. In the following, we present several techniques to improve the estimation.
4.4.1. Variable Settings

In our method, the latency of the LLVM-IR instruction is assigned to the variables in equation . However, because a
simple one-to-one assignment will result in too many variables and increase the number of sample programs required,
we use a grouping technique in which instructions with similar behaviors are grouped into a single variable. Because
an overly rough assignment will decrease the estimation cycle accuracy, the assignment of LLVM-IR instructions to
variables is an important issue. This assignment must be performed such that the number of variables is not increased

significantly while minimizing the latency differences for each variable.

In this study, we classified the instructions according to their processing similarities and number of cycles. Because
there are many distinct processing instructions in LLVM-IR, we performed a rough classification of these instructions
as shown in Table [l to avoid an excessive number of variables. The characteristics of each instruction variable are as

follows:

arithmetic Integer arithmetic instruction set

div Integer division instruction
float Floating-point instruction set
fdiv Floating-point division instruction
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Table 1: Instruction classification table (part of the instructions)

Instruction Variable Instruction
arithmetic add ?ub mul srem
urem icmp
div sdiv
float fadd fsub fmul  fcmp
fdiv fdiv
load load
store store
callret call ret
othersl sext zext sitofp  fptosi
others2 getelementptr alloca phi br

load Load Instruction

store Store Instruction

callret Call instruction and Ret instruction
othersl Cast instruction set

others2 Other instruction groups

4.4.2. Classification of Instructions with Operand Dependencies

Although a mechanism to forward register values is present in modern hardware, delays are still incurred for some
instructions such as load. In this study, we distinguish instructions that cause delays from those with operand
dependencies. We say that an instruction has an operand dependency when its result is used by the next instruction in

LLVM-IR. We classify the instructions div, float, fdiv, and load into two types of variables: inst and inst_d.
4.5. Regression Analysis Phase

In the regression analysis phase, the latency is calculated using the values obtained from the measurement and

simulation phases.

We used the error least-squares method for the regression analysis in which the error was defined as the difference
between the estimated number of cycles and that executed on the actual machine. We calculated the square of the
error for each measurement program and added the squares of all the programs to obtain the sum of the squares of the
error. The combination of the variables Latencies and Qverhead that minimizes the sum of squared errors is obtained

through regression analysis with the following two constraints:

e The value of each latency is non-negative.
e The error of the estimated number of cycles is less than 4-20%.
We used the solver function in Microsoft Excel because the constraints could be easily set and the generated outputs in

the CSV files easily handled. In addition, the solver function in Excel output the best solution even if there was no

solution that satisfied the constraint conditions; therefore, the latency would be output for all situations.
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Table 2: Overview of the evaluation programs

No. | Program Name Description

Benchmark program for
embedded systems developed by EEMBC

2 | Selectionsort.c | Program to perform selection sorting

1 | CoreMark.c [I]

Program that calls a recursive function and
3 Functions3.c performs integer and floating-point

operations within the function

Program to perform integer arithmetic with
4 Functions4.c recursive functions and

compare the size of two numbers

Program to perform floating point arithmetic,

5 | Functionsll.c | including division with recursive functions

and compare the size of two numbers

5. Evaluation for Software Performance Estimation

In this section, we evaluate the estimation of the SHIM software performance for the Raspberry Pi3 Model B+ described

in the previous section.
5.1. Evaluation Method

The accuracy of the estimation is evaluated through the error, which is defined as

(Total Cycles — Estimation Result)
Total Cycles

(5)

Error =

The programs used in our evaluation are outlined in Table [2l Other than CoreMark.c, the remaining four programs
were self-made. The four programs were designed such that the overlaps in the trends of the number of executions were

minimized for effective evaluation.
5.2. Results of estimation accuracy evaluation experiment

The results of applying the estimated latency to the five evaluation programs are presented in Fig[I0] where our
proposed method is compared with the previous method [4]. The numbers in each graph in the figure correspond
to those in Table |2l The errors for the proposed method were within the SHIM performance target of +20% for all
the evaluation programs, and the error of CoreMark.c was within +10%. CoreMark.c is a well-known benchmark for
embedded systems and is the most practical program among the evaluation programs. In addition, error rates for the

proposed method are reduced in all evaluation programs compared with the previous method.
Conclusion

In this study, we proposed A) a method for software performance estimation with SHIM and B) a method for estimating
the performance of each LLVM-IR instruction stored in SHIM using regression analysis. The proposed methods
were implemented and tested on a Raspberry Pi3 Model B+. The target error of +20% was achieved in the SHIM
performance value, and error rates were reduced in all experiments compared with the previous method. Furthermore,

our method for estimation of execution cycles for each LLVM-IR instruction is easily applicable to other processors
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Figure 10: Error rate for the evaluation programs

with different instruction set. Thus, our proposed method will greatly reduce the cost of estimation.

In the future, we will provide support for system calls and library functions in the measurement program. Furthermore,
one of the main goals of this study is to apply the proposed methods to different hardware. It is necessary to test the

applicability of our method to other hardware and to make further improvements.
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Appendix A. Top-level class diagram of SHIM XML
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Figure 11: Class diagram representation of the SHIM XML schema (top-level elements) [6]
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