
International Journal of Computer and Technology Vol 21 (2021) ISSN: 2277-3061 https://rajpub.com/index.php/ijct

DOI https://doi.org/10.24297/ijct.v21i.9004

Code Generation from Simulink Models with Task and Data Parallelism

Pin Xu1, Masaki Kondo2 and Masato Edahiro1

1Nagoya University
2NEC Solution Innovators, Ltd.

eda@ertl.jp

Abstract

In this paper, we propose a method to automatically generate parallelized code from Simulink models, while exploiting
both task and data parallelism. Building on previous research, we propose a model-based parallelizer (MBP) that
exploits task parallelism and assigns tasks to CPU cores using a hierarchical clustering method. We also propose a
method in which data-parallel SYCL code is generated from Simulink models; computations with data parallelism are
expressed in the form of S-Function Builder blocks and are executed in a heterogeneous computing environment. Most
parts of the procedure can be automated with scripts, and the two methods can be applied together. In the evaluation,
the data-parallel programs generated using our proposed method achieved a maximum speedup of approximately 547
times, compared to sequential programs, without observable differences in the computed results. In addition, the
programs generated while exploiting both task and data parallelism were confirmed to have achieved better performance
than those exploiting either one of the two.
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1. Introduction

The Simulink [14] graphical programming environment is widely used in the model-based design of embedded systems.
Its multi-core and many-core performance has drawn great attention recently. In addition, calculations exhibiting
data parallelism, for example, image processing and neural network inferences, have become increasingly common
in embedded systems, to the extent that systems-on-a-chip (SoCs) containing graphics-processing units (GPUs) or
other specialized hardware are being created. Thus, there is a great need to automatically generate parallel code from
Simulink models.

In this paper, we propose a method to automatically generate parallelized code from Simulink models, while exploiting
both task and data parallelism. Based on previous research, we propose a model-based parallelizer (MBP) that exploits
task parallelism and assigns tasks to CPU cores, using the hierarchical clustering method described in [22][23]. We also
propose a method; data-parallel SYCL [11] code is generated from Simulink models, in which computations with data
parallelism are expressed in the form of S-Function Builder blocks and are executed in a heterogeneous computing
environment. Most parts of the procedure can be automated with scripts, and the two methods can be applied together.

The contributions of this paper are as follows:

1. We developed a model-based parallelizer for automatically generating task-parallel C++ code, centered around
the block-level XML (BLXML) markup language, while implementing a hierarchical clustering method.

2. We proposed a semi-automatic approach for generating data-parallel SYCL code utilizing an existing source-to-
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source compiler, while targeting heterogeneous architectures containing data-parallel accelerators.

3. We proposed an approach for semi-automatically generating programs exploiting both task and data parallelism
through the combined application of the above two approaches, which we believe is the first proposal of this kind.

Section 2 provides a brief review of the related work and previous studies. Section 3 describes the major tools used in
our approach, and Section 4 provides an overview of the proposed method. In Section 5, we evaluate our approach
with models that exhibit data parallelism and models that exhibit both task and data parallelism. Section 6 concludes
the paper.

2. Previous and related work

BLXML, a markup language specifically designed for efficiently representing block-level information in Simulink models,
was proposed by Yamaguchi et al. [21]. It saves information on performance profiles, caller-callee relationships, and
core assignments of functions, in addition to block diagrams and source code. Our approach to task-parallel code
generation centers around the BLXML file format.

Zhong et al. [22][23] proposed a hierarchical clustering method that facilitates task-parallel code generation. It is a
set of algorithms for mapping functions to cores on a heterogeneous platform. It improves the efficiency of previously
proposed algorithms; e.g., the critical-path algorithm proposed in [10]. We implemented the hierarchical clustering
method as part of our approach to task-parallel code generation.

A large amount of research has been conducted on generating task-parallel code from Simulink models. One popular
approach is to alter the Simulink block diagram to reflect the mapping of tasks to cores before generating serial code,
and then making relatively minor changes to facilitate multithreading. References [8], [15], and [17] achieved varying
levels of automation using such approaches, while targeting homogeneous architectures.

On the other hand, [3] proposed an operation scheme in which code written by a model designer with task parallelism
in mind is incorporated into Simulink models. The scheme was implemented in [2], where code that contains compiler
directives targeting the RATI Linux parallel-programming library is inserted into hand-written C MEX S-Functions
to achieve automated code generation. A source-to-source compiler is then utilized to create pthread calls, based on
compiler directives.

More recently, direct, automatic translation to parallelized code has been attempted, such as [4], which translates
the code into SystemC, while also targeting heterogeneous architectures, and [12], which translates it into symmetric
multiprocessing (SMP) code. However, most of these studies only attempted to exploit task parallelism. Reference [18]
aims at exploiting both task parallelism and loop-level (i.e., data) parallelism through the application of OSCAR, a
multigrain parallelizing compiler, on the serial code generated by Simulink, while targeting homogeneous architectures.

We believe that our proposed approach is the first attempt at semi-automatic parallel-code generation that exploits
both task and data parallelism, while targeting heterogeneous architectures. Our approach incorporates multiple ideas
from related works, such as using compiler directives and S-Functions, source-to-source compilers, and extracting data
parallelism from for loops.

3. Tools

SYCL [11] is an abstraction layer standardized by the Khronos Group, which aims to enable cross-platform heterogeneous
parallelized programming with a pure C++ grammar. Intel data-parallel C++ (DPC++) is one of the many
implementations of the SYCL standard, developed for Intel CPUs and GPUs, while also providing limited support for
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Nvidia GPUs and other platforms. Furthermore, Intel provides the Intel oneAPI Base Toolkit [9], which contains a
number of tools centered on the compilation and deployment of Intel DPC++ programs. In this research, the following
two tools were utilized to generate data-parallel programs.

1. Intel oneAPI DPC++/C++ Compiler, which is an open-source compiler for Intel DPC++, based on Clang/low-
level virtual machine (LLVM).

2. Intel DPC++ Compatibility Tool (Intel DPCT), which converts compute-unified device architecture (CUDA)
code to Intel DPC++ code.

Polyhedral parallel-code generation (PPCG) [19] is a source-to-source compiler that converts C code, where computa-
tions exhibiting data parallelism are expressed in multi-layered for loops, to CUDA code. It is based on the polyhedral
model [6][20], a well-known optimization model for parallel programming.

4. Proposed method

4.1 Model-based parallelizer (MBP)

Building on previous research, we propose a model-based parallelizer (MBP) that exploits task parallelism and
assigns tasks to CPU cores, using the hierarchical clustering method described in [22][23]. The steps by which such
parallelization is performed are illustrated in Fig. 1 and are described in the following sections.

Figure 1: Steps by which MBP performs task parallelization

4.1.1 Generation of BLXML file

As the first step of MBP, serial C code is generated from the Simulink model using Embedded Coder [13], a tool
provided as a part of Simulink. The serial C code is further processed by the Clang compiler to generate an abstract
syntax tree, expressed in the JSON file format. MBP then generates a BLXML file, based on information from the
serial C code and the JSON file.

4.1.2 Collection of information on functions
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Some functions must be executed serially; especially, functions that are always generated by Embedded Coder from any
Simulink model and functions specifically designated by the user. To address this, MBP generates a CSV file containing
the function names, line numbers in the source file where the function is located, and information on such designations.

4.1.3 Collection of performance profiles

MBP collects a flat profile of the functions’ performance using the default profiler provided by the operating system:
gprof [7] in the GNU/Linux environment. Information on performance is then stored in the BLXML file, as described
in Section 4.1.1.

4.1.4 Task-parallel program generation

Finally, MBP generates task-parallel C++ code using the standard thread library, based on information on function-level
designations and performance, collected as described in previous sections. The functions were assigned to the CPU
cores using the hierarchical clustering method described in [22][23].

4.2 Data-parallel program generation

4.2.1 Construction of Simulink models with data parallelism

Custom Simulink blocks are required to efficiently model arbitrary computations that exhibit data parallelism. The
various types of custom Simulink blocks are compared in Table 1. Among the options, we propose the use of the
S-Function Builder for the following reasons.

1. S-Function Builder blocks are capable of storing internal states, thereby enabling the modeling of more complicated
computations.

2. Code written in S-Function Builder blocks is copied in its entirety into the serial code generated by Embedded
Coder, making it possible to indicate the position of data-parallelizable code with either comments or compiler
directives.

3. S-Function Builder blocks automatically generate the target-language compiler (TLC) files needed for serial-code
generation, reducing the amount of code that must be written by hand.

Specifically, computation with data parallelism is expressed as nested for loops. Their locations are indicated by
compiler directives specified by the PPCG compiler, whose use is described in the following sections.

Table 1: Comparison of custom Simulink blocks

S-Function
Builder

Level-2 MATLAB
S-Function

C MEX
S-Function

MATLAB
Function

C Caller

Performance Fast Fast Fast Slow Fast
Supports internal states Yes Yes Yes N/A N/A
Language written in C/C++ MATLAB C MEX MATLAB C
Generation of TLC Automatic Manual Manual N/A N/A

4.2.2 Parallel-programming language

We propose to use SYCL [11] as the code-generation target, and Intel DPC++ [9] to implement SYCL.
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The parallel-programming languages that are probable targets of code generation are summarized in Table 2. Among
them, SYCL has a great advantage in that it is designed as a general-purpose programming language, and it uses the
same syntax for the code of both the host and the target. Moreover, it is a higher-level programming language than
some of its counterparts; thus, enabling code portability. Additionally, the facts that it supports more target platforms
and is an open-standard language are also desirable properties.

Table 2: Comparison of parallel-programming languages

SYCL OpenVX OpenCL CUDA

Application type General-purpose Image processing General-purpose General-purpose
Language based on C++ C/C++ C/C++ C/C++

Syntax of host and kernel code Same Different Different Different
Level of abstraction High High Low Low
Target platforms Multiple Multiple Multiple Nvidia GPU
Open standard Yes Yes Yes No

A number of projects have aimed at implementing the SYCL standard. The status of some of these projects at the time
of writing are summarized in Table 3 [1][5][9][16]. We propose to adopt Intel DPC++ as the SYCL implementation, for
its official release, active maintenance, and greater number of supported platforms.

Table 3: Projects implementing the SYCL standard

Intel DPC++ TriSYCL hipSYCL ComputeCpp

Leading organization Intel Xilinx Heidelberg University Codeplay
Release Official Incomplete Beta Official

Most recent release December 2020 March 2018 December 2020 November 2020
Open source Yes Yes Yes No

CPU Any Any Any Any
GPU Intel/Nvidia Nvidia Nvidia Intel/AMD/Nvidia
FPGA Intel Xilinx N/A N/A

4.2.3 Generation of SYCL code

Common methods of generating code from C code usually include conversion to lower-level languages, e.g., LLVM-
intermediate representation (LLVM-IR), using tools such as Clang/LLVM. However, generating code in high-level
languages, e.g., SYCL, from such lower-level languages is difficult. Intel DPCT provides automatic translation from
CUDA to SYCL. Therefore, SYCL code could be generated relatively simply, without needing to handle lower-level
languages, by using CUDA as an intermediate representation.

In this case, a source-to-source compiler that can compile C code to CUDA code and extract data parallelism is required.
However, most such compilers can process only a subset of legitimate C code. Moreover, it is in the best interest of our
research, which aims to automate the code-generation process, to reduce possible errors that may occur through using
such compilers. In this regard, the compiler to be used should satisfy the following requirements:

1. The subset of legitimate C code it can process shall be as large as possible.

2. It shall be possible to designate code segments to be processed with comments or compiler directives.
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We propose to use PPCG as the C-to-CUDA compiler, as it satisfies the requirements to the greatest degree.

In summary, we propose a method consisting of the following steps, in which the SYCL code is generated from Simulink
models constructed according to the method described in Section 4.2.1.

1. Generate serial C code from the Simulink model using Embedded Coder [13].

2. Generate CUDA code from the serial C code using PPCG [19].

3. Generate SYCL code from the CUDA code using Intel DPCT [9].

4.3 Combined application of Sections 4.1 and 4.2

We propose a method that combines the parallelizing techniques described in Sections 4.1 and 4.2, as follows. A
performance profile is first generated from the data-parallel SYCL program, using the method described in Section
4.2, and executed on the target heterogeneous platform. MBP then performs task parallelization on the original
serial C code, while treating the data-parallel accelerator as if it were a type of CPU core. Finally, we substitute
the functions containing data-parallel computations in the generated task-parallel C++ code with their respective
parallelized functions in the SYCL code.

This approach of combining MBP and the data-parallelization application is possible for the following reasons. First,
MBP can be configured to target heterogeneous platforms, making it possible to treat the accelerator as a type of CPU
core. Second, the task-parallel C++ code generated by MBP uses the standard thread library, making it possible to
substitute all functions that would be executed in separate threads without having to alter the code that calls them.
Finally, the code that conforms to the SYCL standard uses valid C++ syntax, enabling direct substitutions without
further translation.

4.4 Automating the code generation

The steps by which the SYCL code is generated, as described in Section 4.2.3, are summarized in Fig. 2. Among these
steps, the serial C code from the Simulink models must be generated manually using Embedded Coder; however, the
other steps, where the CUDA intermediate representation and SYCL code are generated, as well as the compilation of
SYCL code into data-parallel programs, were successfully automated.

Figure 2: Steps by which SYCL code is generated
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Fig. 3 summarizes the steps for generating the code that exploits both task and data parallelism, as described in
Section 4.3. Among these steps, the data-parallel program generation contains manual operations, whereas all the
other steps are successfully automated.

Figure 3: Steps by which the code exploiting both task parallelism and data parallelism is generated

5. Evaluation

This section describes the experiments with our proposed methods to evaluate the correctness of the generated parallel
programs and their performance gains over their serial counterparts.

5.1 Methodology

We evaluate the correctness of the generated parallel programs by comparing the computation results from the parallel
and serial programs. We also evaluated the performance gain by measuring the time taken to execute both programs
100 times each. The performance gain is defined as the ratio of the time taken by the serial programs to that by the
parallel programs.

5.2 Environment

The serial programs are executed in a single-core CPU environment, as described in Table 4. The data-parallel programs
are executed in the multicore CPU environment described in Table 5, as well as in the CPU + GPU environment
described in Table 6. The programs exploiting both task and data parallelism are executed in the CPU + GPU
environment, as described in Table 6.

Table 4: Single-core CPU environment

Item Content

CPU Intel Core i9-7900X (3.30 GHz)
RAM 16 GB DDR4 DIMM×8

C standard C11
C compiler Clang 12.0.0 (trunk)

7



International Journal of Computer and Technology Vol 21 (2021) ISSN: 2277-3061 https://rajpub.com/index.php/ijct

Table 5: Multi-core CPU environment

Item Content

CPU Intel Core i9-7900X (3.30 GHz)
(10 cores, 20 threads)

RAM 16 GB DDR4 DIMM×8
SYCL compiler Intel oneAPI DPC++ Compiler 2021.1
SYCL backend Intel OpenCL 2.1

Table 6: CPU + GPU environment

Item Content

CPU Intel Core i9-7900X (3.30 GHz)
RAM 16 GB DDR4 DIMM×8
GPU Nvidia Titan V (1.20 GHz)

SYCL compiler Intel oneAPI DPC++ Compiler 2021.1
SYCL backend Nvidia CUDA 10.2.89

5.3 Evaluation 1: Correctness and performance gains of data-parallel programs

In this evaluation, we compare the data-parallel programs, generated through the method described in Section 4.2,
with the serial programs generated by Embedded Coder from a number of Simulink models.

5.3.1 Simulink models used

In this evaluation, we use three types of Simulink models, each designed to carry out one of the following types of
calculations that exhibit data parallelism, with adjustable calculation scales.

• Simple vector calculations, with vector lengths between 10,000 and 50,000,000 (Fig. 4a).

• Application of a Gaussian filter on an image, and the difference between two images, with the number of pixels in
each image between 76,800 and 64,000,000 (Fig. 4b).

• Matrix multiplications, with matrix sizes between 250× 250 and 5000× 5000 (Fig. 4c).

(a) Simple vector calculations (b) Gaussian filter and difference (c) Matrix multiplications

Figure 4: Simulink models used in evaluation 1

5.3.2 Results

For all Simulink models, there were no differences between the calculation results from the data-parallel programs and
those from the serial programs, indicating the correctness of the data-parallel programs generated according to our
proposed approach, within the limits of this evaluation.
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For each type of Simulink model, the performance gains through data-parallelization, as measured in the multicore
CPU environment and in the CPU + GPU environment, are summarized in Figs. 5 through 8.

Figure 5: Simple vector calculations Figure 6: Gaussian filter and difference

Figure 7: Matrix multiplication (multi-core CPU) Figure 8: Matrix multiplication (CPU + GPU)

5.3.3 Discussion

5.3.3.1 Difference in performance gains through data parallelization between different models

The maximum performance gains attained from each type of Simulink model and in each target environment are
summarized in Table 7. It is shown that, although the correctness of the data-parallel programs and their performance
gains over the serial programs were confirmed across three types of Simulink models and two types of target environments,
there were significant differences between the maximum performance gains attained.

Table 7: Maximum performance gains compared with the serial programs, attained on different Simulink models and
environments

Multi-core CPU environment CPU + GPU environment

Simple vector calculations 3.76 3.48
Gaussian filter and difference 6.46 7.55

Matrix multiplication 149.52 547.09

It is assumed that this difference is due to the difference in the proportion of data-parallel operations between the
models.

5.3.3.2 Performance gains in multicore CPU environments
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With respect to the matrix-multiplication model, the maximum performance gain attained in the multicore CPU
environment was 149.52, which significantly exceeds the core count (10) and thread count (20). The reason for this
discrepancy is assumed to be the automatic optimizations, such as coalescing and loop unrolling, performed by PPCG
and Intel DPCT on the code they generate, in addition to the parallelization.

5.4 Evaluation 2: Correctness and performance gains of programs exploiting both task and data paral-
lelism

In this evaluation, we compare programs exploiting both task and data parallelism, generated through the method
described in Section 4.3, with task-parallel programs generated by MBP, data-parallel programs, and serial programs.

5.4.1 Simulink models used

In this evaluation, we used the model depicted in Fig. 9, where matrix multiplications were performed. The candidate
for data parallelization is limited to one of the blocks, that is, the matmul block, whose calculation scale is adjustable
between 500× 500 and 2500× 2500.

Figure 9: Simulink models used in evaluation 2

5.4.2 Results

Across the different calculation scales, there were no differences between the calculation results from the programs
exploiting both task and data parallelism, those from task-parallel programs, those from data-parallel programs, and
those from serial programs. This indicates the correctness of the programs exploiting both task and data parallelism
generated according to our proposed approach, within the limits of this evaluation.

The performance gains through the different parallelization techniques in the CPU + GPU environment are summarized
in Fig. 10.

5.4.3 Discussion

The performance gains attained by the programs exploiting both task and data parallelism were consistently greater
than those attained by task-parallel programs and data-parallel programs, indicating the superiority of our proposed
combined-parallelization approach.
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Figure 10: Performance gains through different parallelization techniques

The performance gains attained by the task-parallel programs decreased, while those attained by the data-parallel
programs, as well as by programs exploiting both task and data parallelism, increased with the calculation scale of the
candidate block for data parallelization. This is assumed to be due to the great effectiveness of parallelization on the
candidate block, to the extent that the block is not on the critical path of the entire program. This can be confirmed
by the extremely small variations in the time taken by data-parallel programs, as well as by programs exploiting both
task and data parallelism, with respect to different calculation scales.

6. Conclusion

We proposed methods in which task-parallelism and data-parallelism were exploited to generate parallel programs from
Simulink models. Specifically, we proposed the following approaches.

1. A model-based parallelizer (MBP) for automatically generating task-parallel C++ code, centered around the
BLXML markup language proposed in [21], and using the hierarchical clustering method described in [22][23] for
core assignment.

2. A semi-automatic approach for generating data-parallel SYCL code, which combines the PPCG and the Intel
DPCT compilers.

3. An approach for semi-automatically generating programs exploiting both task and data parallelism through the
combined application of the above two approaches.

Evaluation 1 compared data-parallel programs generated through our proposed approach to serial programs generated
by Embedded Coder from a number of Simulink models. The data-parallel programs performed correct calculations,
while attaining a maximum performance of approximately 547 times that of the serial programs.

Evaluation 2 compared programs exploiting both task and data parallelism, generated through our proposed approach,
to task-parallel programs, data-parallel programs, and serial programs. The parallel programs performed correct
calculations, and the programs exploiting both task and data parallelism achieved better performance than those
generated while exploiting either one of the two.
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Further research is needed with regard to the performance of parallel programs generated through our proposed
approach on target platforms containing more than one type of accelerator, as well as an accurate estimation of the
cost of communication between the host CPU and the accelerators in MBP.
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