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ABSTRACT 

The present paper attempts to study the bi-objective hospital site determination problem under fuzzy environment. In this 
paper, the concept of Tabu search is used for solving bi-objective facility location problem i.e. the most suitable hospital 
site to be searched out of the various possible sites nearest to the accidental prone areas so as to minimize the total 
transportation cost along with the transportation time using triangular fuzzy numbers. For this, we first search the hospital 
sites near accidental prone areas and then on the basis of that we obtain various optimal solutions with different 
transportation costs and times. 

Indexing terms/Keywords 

Optimization; Fuzzy Bi-Objective transportation problem; Ranking function; Triangular fuzzy number; Optimal solution; 
Tabu Search. 

Academic Discipline and Sub-Disciplines 

Mathematics and Fuzzy transportation problem 

MATHEMATICS SUBJECT CLASSIFICATION 

90C08, 90C90 

TYPE (METHOD/APPROACH) 

Illustration of proposed algorithm using numerical example. 

INTRODUCTION 

In operations research, the models representing transportation problems or facility location problems, etc. catering the real 
world situations always involve some parameters whose values are not exact and are to be assigned by the experts and 
decision makers. In conventional approach, the aforementioned parameters were fixed to an exact value by decision 
makers and experts. However, these values fixed by them are only the statistical inferences from the past data and these 
are not very accurate. To obtain the accurate values of these imprecise and vague parameters, the concept of fuzzy sets 
was introduced by Zadeh [5] in 1965. In 1970, Bellman and Zadeh [1], used this concept of fuzzy sets for evaluating the 
optimization techniques under fuzzy environments. Dubois and Parade in 1980 [6], first used these optimization 
techniques under fuzzy environment for solving transportation problems. Since then, tremendous significant advances 
have been done for the development of various methodologies and their applications in various fields involving real world 
problems.  

    Location allocation problem was first formulated by Cooper [4] in 1963. Thereafter several approaches were used for 
solving these problems. Under crisp environment, various extensions and applications in the area of facility location can 
be found in [8, 9, 26].  

     In 1979, Narasimhan [7], presented an application of fuzzy set theory for locating the gas stations. In 1987, Darzentas 
[20], formulated a discrete location model with fuzzy accessibility using integer programming. In 1992, Bhattacharya et al. 
[12] presented a fuzzy goal programming model for locating a single facility on a plane bounded by a convex polygon 
under the triple criteria maximin, minimax and minisum location. Also, in 1993, Bhattacharya et al. [13] presented a fuzzy 
goal programming model for locating multiple new facilities on a plane bounded by a convex polygon under the criteria: (1) 
minimize the sum of all the transportation costs and (2) minimize the maximum distances from the facilities to the demand 
points. In 2002, Chu [21], presented a fuzzy TOPSIS model for evaluating facility location selection problem where he 
used fuzzy numbers for representing the ratings of various alternative locations with different subjective attributes. In 2003, 
Kahraman et al. [22] used fuzzy group decision making for facility location. In 2005, Gen et al. [23] formulated a Hybrid 
genetic algorithm for multi time period production / distribution planning so that production and distribution of goods should 
be accurate and to be delivered to the correct customer at desired time minimizing the system wide cost. In 2006, Lin et al. 
[24] used multi-objective meta-heuristics for a location routing problem with multiple use of vehicles on the real and 
simulated data. In his paper, author applied Tabu search and simulated annealing method and compared their results 
using a new defined procedure. Caballero et al. [14] in 2007 solved a multi-objective location routing problem for 
slaughterhouses with a meta-heuristic based on Tabu search taking into account certain economic objectives (start-up, 
maintenance, and transport costs) and social objectives (social rejection by towns on the truck routes, maximum risk as an 
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equity criterion, and the negative implications for towns close to the plant). Uno and Katagiri [25] in 2008, solved single 
and multi-objective defensive location problem on a network with Tabu search algorithm to locate defensive facilities in 
order to prevent her/his enemies from reaching an important site called ‘core’. In 2012, Gupta A. et al. [27] used this 
concept of Tabu search for solving warehouse problem.  

      The concept of Tabu search was formulated for combinatorial optimizations by Glover in 1989-90[2-3].Tabu search is 
a powerful algorithmic approach that has been applied with great success to many difficult combinatorial problems. A 
particularly nice feature of Tabu Search is that, like all approaches based on local search, it can handle easily the 
complicating constraints that are typically found in real-life applications. It is thus a really practical approach. Using this 
concept, one can seek the best global solution for the transportation problems. To use Tabu search the most important 
thing required is Tabu list, its existence makes this concept an efficient technique to conduct global search instead of 
applying to a small portion of search space. Important features of Tabu search: 

a) In Tabu list there exist forbidden moves which prevent cycling i.e. revisiting the solution examined recently. The 
procedure is terminated of the solution obtained has already been examined earlier, or if the solution is not 
improving after certain number of iterations. 

b) Tabu list changes when we move to the next solution whether worst or the best.  

c) Solution obtained using Tabu search is best out of the various solutions obtained so far. 

As, real numbers can be compared using equality, greater than or lesser than notations it is difficult to compare the Fuzzy 
numbers. In order to compare the fuzzy numbers, ranking methods are used. There are few very commonly used Fuzzy 
numbers as Trapezoidal Fuzzy Numbers, Triangular Fuzzy numbers, L-R type fuzzy numbers etc. In this paper, we are 
using Triangular Fuzzy numbers and for the comparison of triangular fuzzy numbers we are using the ranking function. 
Various ranking functions are used in the papers [28, 29, 30]. 

In this paper, bi-objective hospital site determination problem is studied under fuzzy environment using the concept of 
Tabu search. For this, we first search the hospital sites near accidental prone areas and then on the basis of that we 
obtain various optimal solutions with different transportation costs and time in order to minimize the total transportation 
cost along with the transportation time using triangular fuzzy numbers.  

A comparative study of the work done in this paper vs. few of the papers studied for literature review is as below: 

Comparative Study in Tabular Form 

 Fuzzy Component Method Used Objectives 

Present Paper Triangular Fuzzy Numbers Tabu Search Algorithm Minimize Total Cost and minimize maximum 
time taken to reach the hospital site from 
accidental prone area 

Lin et. al. [24] Crisp Data Tabu Search and 
Simulated Annealing 
method 

To minimize total cost and work load 
imbalance 

Uno and 
Katagiri [25] 

Fuzzy Data (membership 
functions are used in the 
method) 

Interactive Fuzzy 
satisfying method for 
DLP 

To locate defensive facilities to prevent enemy 
from reaching important site 

Caballero et. al. 
[14] 

Crisp Data MOAMP method based 
on Tabu Search 

To minimize economic an social objectives 

Bhattacharya et. 
al. [12] 

Fuzzy Data Goal Programming Locating a single facility under triple criteria 
maximin, minimax and minisum location. 

Bhattacharya et. 
al. [13] 

Fuzzy Data Goal Programming Minimize the sum of all the transportation costs 
and minimize the maximum distances from the 
facilities to the demand points. 

The present paper is organized as follows: In Section-2 few basic definitions, arithmetic operations of Triangular Fuzzy 
numbers and method for comparing fuzzy numbers are reviewed. Section-3 is Mathematical formulation of bi-objective 
hospital site problem under fuzzy environment. In Section-4 the Proposed Algorithm is given. In Section-5 Numerical 
example is solved explaining the algorithm. Section-6 presents the significance of the present study. Sections-7 discusses 
the result and conclusion and in Section-8 Future Work is discussed. 

PRELIMINARIES 

Fuzzy Set 

A fuzzy set is characterized by a membership function mapping element of a domain, space or universe of discourse X to 

the unit interval [0, 1] i.e. Ã = {(x, 𝜇𝐴̃ (x); x   X}, here 
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𝜇𝐴̃ (x): X → [0, 1] 

is a mapping called the degree of membership function of the fuzzy set A and 𝜇𝐴̃ (x) is called the membership value of x ε 

X in the fuzzy set A. These membership grades are often represented by real numbers ranging from [0, 1].  

Triangular Fuzzy Numbers 

It is a fuzzy number represented with three points as follows:  

Ã = (a1, a2, a3), this representation is interpreted as membership functions and holds the following conditions  

(i) a1 to a2 is increasing function. 

(ii) a2 to a3 is decreasing function.  

(iii) a1 ≤ a2 ≤ a3.  
 

                           

                           0                                  𝑥  < a1 

                            
(𝑥−𝑎1)

(𝑎2−𝑎1)
                        a1 ≤ 𝑥  ≤a2 

         𝜇𝐴̃ (x)=     
(𝑎3−𝑥)

(𝑎3−𝑎2)
                         a2 ≤ 𝑥  ≤ a3  

                           0                                   𝑥 > a3  

 

Fig 1. Triangular Fuzzy Number 

Properties of Triangular Fuzzy Number 

1) Triangular fuzzy number Ã = (a, b, c) is said to be non negative triangular fuzzy number Iff a-c ≥ 0  

2) A triangular fuzzy number Ã = (a, b, c) is said to be zero triangular fuzzy number Iff a=0, b=0, c=0.  

3) Two triangular fuzzy numbers Ã1 = (a1, b1, c1) and Ã2 = (a2, b2, c2) are said to be equal Iff a1= a2, b1= b2, c1 
=c2. 

Arithmetic Operators for Solving Triangular Fuzzy Number  

If Ã = (a1, b1, c1) and B̃= (a2, b2, c2) two triangular fuzzy numbers then the arithmetic operations on Ã  and B̃ are as 
follows:  

Addition Ã + B̃ = (a1+a2, b1+b2, c1+c2)  

Subtraction Ã - B̃ = (a1-a2, b1-b2, c1-c2)  

Ranking Function 

A ranking function is defined as R : F(R)  R, where F(R) is set of fuzzy numbers defined on real numbers mapping 
each fuzzy number to real number.  

In 2012, Akyar et. al. [30], gave a convenient method for ranking triangular fuzzy numbers based on their incenter and 
inradius. To compare triangular fuzzy numbers authors used lexicographical order by their ranks, that is, for triangular 

fuzzy numbers Ã and  B̃, Ã< B̃ iff Rank( Ã) <L Rank(B̃),where <L denotes lexicographical order. 

A numerical example illustrating their method is as shown below: 
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Let Ã = (−0.3,−0.2, 0.1) and B̃ = (0.2, 0.3, 0.4). Using 
[44], we find 

rÃ = 0.1633, rB̃  = 0.0905 , 

IÃ = (−.1195, 0.1633), IB̃  = (0.3000, 0.0905) , 

and  we get 

Rank(Ã)=(−0.2012,0.8367,−0.2),                    

Rank(B̃) = (0.2548, 0.9095, 0.3) . 

 

Since (−0.2012, 0.8367,−0.2) <L (0.2548, 0.9095, 0.3) 

we conclude that  Ã< B̃(as shown in figure) 

 

MATHEMATICAL FORMULATION OF BI-OBJECTIVE HOSPITAL SITE PROBLEM 
UNDER FUZZY ENVIRONMENT 

Let there exist ‘m’ accidental prone areas and ‘n’ hospital sites and the decision maker wants to select ‘k’ number of sites 
out of n sites and then wants to gather m accidental sites to the k selected hospital site so as to minimize- total fuzzy cost 
and maximum fuzzy time required. It is assumed that each site selected for construction of hospital must have at least one 
accidental prone area attached to it. Mathematically, the above problem may be formulated as 

Minimize             Ũ =  ∑ ∑ 𝑐̃𝑖𝑗 𝑛
𝑗=1

𝑚
𝑖=1 𝑥̃𝑖𝑗                                                                                         (1)           

Minimize    𝑇̃ where 𝑇̃ ≅ maximum {𝑡̃𝑖𝑗 : xij = 1, i=1, 2,..., m ; j=1,2,...,n}                                                         (2) 

Subject to 

                            ∑ 𝑦𝑗
𝑛
𝑗=1 ≤ 𝑘                                                                                                                               (3) 

                            ∑ 𝑥𝑖𝑗  𝑛
𝑗=1 = 1          i = 1, 2 ..., m                                                                                                 (4) 

                            𝑥𝑖𝑗 − 𝑦𝑗 ≤ 0        i=1, 2,..., m ; j=1,2,...,n                                                                                  (5)                                       

                            ∑ 𝑏̃𝑗𝑦𝑗
𝑛
𝑗=1 ≤ 𝐵̃                                                                                                                            (6) 

                            𝑥𝑖𝑗 , 𝑦𝑗 = 0, 1         i=1, 2,..., m ; j=1,2,...,n                                                                                   (7) 

                            ∑ 𝑥𝑖𝑗 ≥ 𝑦𝑗
𝑚
𝑖=1         j = 1, 2, ..., n                                                                                                  (8) 

Where 

                             m = Total number of Accident Prone Areas 

                             n = Total number of Hospital Sites 

                             k = Number of Sites to be selected 

                             𝑐̃𝑖𝑗= Fuzzy transportation cost from accident prone area to hospital            

                           𝑡̃𝑖𝑗= Fuzzy transportation time from accident prone area to hospital           

                           𝑏̃𝑗= Fuzzy set up cost for setting up of hospital at jth site     

                           𝐵̃ = Total fuzzy Budgetary amount allocated for setting up of Hospitals. 

                           𝑋𝑙= The combination of𝑥𝑖𝑗 ’s during lth non-dominated solution. 

                           𝑦𝑙= The combination of𝑦𝑗 ’s during lth non-dominated solution. 

 

                                  𝑥𝑖𝑗 = {1  𝑖𝑓 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 𝑠𝑖𝑡𝑒 𝑖𝑡ℎ 𝑖𝑠 𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑗𝑡ℎ𝑡ℎ ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                 

                         

                                   𝑦𝑗 = {1 𝑖𝑓 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑎𝑡 𝑗𝑡ℎ𝑠𝑖𝑡𝑒
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                 

             

PROPOSED ALGORITHM 

Step 1: Let 𝑧̃ ≅ min {∑ 𝑐̃𝑖𝑗
𝑚
𝑖=1 ∶ 𝑗 = 1,2, … , 𝑛} and 𝑇̃𝑗 ≅ 𝑚𝑎𝑥 {𝑡̃𝑖𝑗 : 𝑖 = 1,2, … , 𝑚} for j = 1,2,...,n 

There are two cases now. 
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Case 1: If 𝑧̃ occurs corresponding to a unique value of j i.e. j=t, where t ϵ {1,2, … , 𝑛}, then t is the first potential site for the 

first hospital. 

Case 2: If 𝑧̃ occurs corresponding to more than one values of j i.e. j = p1, p2,.., pr then find the min {𝑇̃𝑝1, 𝑇̃𝑝2, ... , 𝑇̃𝑝𝑟}. 

Case 2a: If the minimum value is unique corresponding to pl , then pl is the first potential site for first hospital. 

Case 2b: If the minimum value corresponds to more than one value of j, i.e. j = ps1, ps2, ...  , psq, then we can select any j 
from ps1, ps2, ...  , psq, as the first potential site for the first hospital. 

Step 2: Let the first potential site selected for first hospital be h1 where h1 ϵ {1,2, … , 𝑛}. Now for choosing the next hospital 

site, say h2, where h2 ≠ h1, we need to construct a new table as shown in Table 1: 

 

Table 1: Bi-Objective Hospital Site Problem 

 

 

Let the cost and time of (i,j)th cell, j ≠ h1 in new table be  𝑐̃𝑖𝑗
1  and 𝑡̃𝑖𝑗

1 , where  

    𝑐̃𝑖𝑗
1  ≅ min{𝑐̃𝑖ℎ1, 𝑐̃𝑖𝑗}  

 And  𝑡̃𝑖𝑗
1 ≅  {

𝑡̃𝑖𝑗      𝑖𝑓 min(𝑐̃𝑖ℎ1, 𝑐̃𝑖𝑗)  ≅ 𝑐̃𝑖𝑗

𝑡̃𝑖ℎ1     𝑖𝑓 min(𝑐̃𝑖ℎ1, 𝑐̃𝑖𝑗)  ≅ 𝑐̃𝑖ℎ1

 

Now, again applying Step 1, we find new combination of hospital sites, say, (h1, h2), where  

h2 𝜖 {1,2, … , 𝑛} and h2 ≠ h1. 

Step 3: Let, (h1, h2), represent two potential sites for two hospitals. Similarly, using Step 2, find k potential sites for k 

hospitals, say, (h1, h2, ..., hk). This combination yields 0th iterative solution (𝑋0
1, 𝑌0

1) for the first efficient solution (X1, Y1). 
After applying various iterations, the optimal solution for the first efficient solution (X1, Y1) is the best solution obtained. 

Step 4: For improving the solution, we use the drop and add rules with Tabu Search, here, the first selected site, i.e. h1 is 

dropped. This site is included in the Tabu list for add and is prohibited from being, selected in next iterative solution 

(𝑋1
1, 𝑌1

1) and k-1 left sites (h2, h3... hk), appearing in the order of their selection in 0th iterative solution are included in Tabu 
list for drop. Using Steps 1 and 2, find all the entries corresponding to combination (h2, h3, ..., hk) and add the new site, 
replacing h1 in Step 2 say hr such that hr≠ h1, h2,....,hk. Selection of sites (h2, h3, ... , hk, hr) using the method described 

above yields the first iterative solution (𝑋1
1, 𝑌1

1) for the first efficient solution (X1, Y1). Evaluate the cost 𝐶̃(𝑋1
1)and time 𝑇̃(𝑋1

1) 
for (h2, h3, ..., hk, hr). 

If 𝐶̃(𝑋1
1) < 𝐶̃(𝑋0

1) then the current iterative solution is taken as the optimal solution for the next iteration, else there is no 

change in the optimal solution. Similarly, we derive the second iterative solution (𝑋2
1, 𝑌2

1), by changing both the Tabu list 

and if the second iterative solution (𝑋2
1, 𝑌2

1) is better than the optimal solution, then the current iterative solution is taken as 

the optimal solution for the next iteration, else the optimal solution remains as is. The third iterative solution (𝑋3
1, 𝑌3

1), and 

the successive iterative solutions will be obtained in the similar way as explained for 1st and 2nd iterative solutions.  

This iterative process is terminated when,  

- Either, we revisit an already visited iterative solution 

- Or, there are no sites left that help in improving the solution. 

The optimal solution obtained at the end of these iterations, becomes 1st efficient solution (X1, Y1). 

 

Hospital Site (j)  

Accidental prone areas 
(i)  

(h1,1) (h1,2)  (h1,j)    (h1,n) 

1         

         

i    𝑐̃𝑖𝑗
1  

𝑡̃𝑖𝑗
1  

    

         

m         
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Step 5: The 2nd fuzzy efficient solution (X2, Y2), will be obtained, by replacing 𝑡̃𝑖𝑗’s ≥ 𝑇̃(𝑋1) with arbitrarily large fuzzy 

number (M,M,M) and thus repeating Step 1 – 5. The optimal solution at the end of iterative process gives second fuzzy 
efficient solution (X2, Y2). Similarly 3rd and the successive solutions can be obtained.  

For 2nd, 3rd and subsequent fuzzy effective solutions if 𝑇̃𝑗 ′𝑠 for all the combinations are arbitrarily large fuzzy number (M, M, 

M), then consider minimum time for the rows instead of the cost factor. 

An example of the above situation is shown below in Table 2: 

Table 2: Sample Table with Large Fuzzy Dataset 

Hospital Site (j)  

Accidental prone areas 
(i)  

1 2  j    n 

1 (a1,b1,c1) 

(M,M,M) 

(a2,b2,c2) 

(x1,y1,z1) 

 (aj,bj,cj) 

(M,M,M) 

   (an,bn,cn) 

(xn,yn,zn) 

2 (p1,q1,r1) 

(x2,y2,z2) 

(p2,q2,r2) 

(M,M,M) 

 (pj,qj,rj) 

(xj,yj,zj) 

   (pn,qn,rn) 

(M,M,M) 

         

i    𝑐̃𝑖𝑗
1  

𝑡̃𝑖𝑗
1  

    

         

m         

𝑇̃𝑗 (M,M,M) (M,M,M)  (M,M,M)    (M,M,M) 

Since 𝑇̃𝑗’s for all the hospital sites is (M,M,M) and we have to consider combination of sites (2,1) then, for the 1st 

accidental prone area [ (a2,b2,c2)(x1,y1,z1)] and for 2nd accidental prone area [(p1,q1,r1)(x2,y2,z2)] cost and time factor will be 
chosen. 

Step 6: Process of obtaining the fuzzy efficient solutions is terminated when the algorithm no longer provides a better 

solution having a lesser time duration than the already existing optimal solution. 

Important Remarks 

Salhi (2002) [31] provides three approaches for defining tabu tenure; fixed to a predetermined value, randomly chosen 
from a specific range, or dynamically changing by adjusting the value. In this work, a predetermined fixed value is 
examined. Before choosing the fixed value, the experiment of varying tabu tenure should be carried out to choose the best 
tabu tenure (Peng, 2010) [32]. The experiment involves testing several numbers, tabu tenure is increased when the same 
solution is visited over and over and is decreased when no duplicate solution have been marked for some time. In this 
work 10, 5, 3, 20 were tested and the outcomes showed that as the tabu tenure becomes large, it results into driving the 
search away from the global optimum. To avoid this, the shorter enough is chosen. 

NUMERICAL EXAMPLE 

Using the following example we illustrate the proposed algorithm.  

Let m=5, n=7, k=3, 𝐵 ̃= (1380, 1400, 1420). Table 3 provides tableau representation of the numerical problem. In the table 

upper entries of (i, j)th cell represents the fuzzy cost  𝑐̃𝑖𝑗 and the lower entries represents the fuzzy time 𝑡̃𝑖𝑗 of 

transportation, respectively from ith accidental prone area to potential Hospital site. 

Table 3: Numerical Problem 

Hospital Sites 
→ 
Accident 
Prone Areas ↓ 

1 2 3 4 5 6 7 

1 
(38,40,
42) 
(5,8,11) 

(28,30,32) 
(1,2,3) 

(44,48,58) 
(9,11,13) 

(117,120,
123) 
(4,6,8) 

(175,177,18
8) 
(8,10,12) 

(165,168,17
7) 
(6,8,13) 

(143,150,15
6) 
(5,7,9) 

2 (69,70,
71) 

(75,80,85) 
(4,6,8) 

(128,130,1
32) 

(128,130,
132) 

(165,168,17
7) 

(133,140,14
7) 

(16,18,26) 
(9,11,13) 
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(4,6,8) (6,8,13) (5,7,9) (5,8,11) (8,10,12) 

3 
(75,80,
85) 
(5,8,11) 

(16,18,26) 
(6,8,13) 

(188,195,2
10) 
(3,5,7) 

(69,70,71) 
(5,8,11) 

(133,140,14
7) 
(9,11,13) 

(128,130,13
2) 
(9,11,16) 

(56,58,66) 
(8,10,12) 

4 

(56,58,
66) 
(9,11,1
3) 

(7,8,15) 
(4,6,8) 

(69,70,71) 
(9,12,18) 

(75,80,85) 
(9,11,13) 

(28,30,32) 
(6,8,13) 

(152,159,16
9) 
(5,8,11) 

(195,210,23
0) 
(4,6,8) 

5 

(78,87,
105) 
(8,10,1
2) 

(90,95,115
) 
(10,13,16) 

(16,18,26) 
(5,8,11) 

(56,58,66) 
(9,11,16) 

(38,40,42) 
(4,6,8) 

(44,48,58) 
(3,5,10) 

(200,220,24
0) 
(14,16,18) 

Set Up Cost 
(90,95,
115) 

(290,300,3
10) 

(670,700,7
30) 

(760,790,
850) 

(380,392,42
8) 

(178,196,21
6) 

(460,490,55
0) 

Table 4 represents the total fuzzy cost ∑ 𝑐̃𝑖𝑗
5
𝑖=1  and fuzzy time 𝑇̃𝑗 obtained using Step 1.  

Table 4: Total Fuzzy Cost and Maximum Fuzzy time for 1st hospital site 

Hospital 
Sites → 
Accident 
Prone 
Areas ↓ 

1 2 3 4 5 6 7 

∑ 𝑐̃𝑖𝑗

5

𝑖=1

 
(316,335,369
) 

(216,231,273
) 

(445,461,497
) 

(445,458,477
) 

(539,555,586
) 

(622,645,683
) 

(610,651,708
) 

𝑇̃𝑗 (9,11,13) (10,13,16) (9,12,18) (9,11,16) (9,11,13) (9,11,16) (14,16,18) 

Since the minimum value of fuzzy cost corresponds to j = 2, therefore, h1 = 2, is the first potential site for first hospital site. 

The various combinations of 2nd site with others are shown in Table 5 using Step 2. 

Table 5: Total Fuzzy Cost and Maximum Fuzzy time for two hospital sites 

Hospital Sites → 
Accident Prone 
Areas ↓ 

(2,1) (2,3) (2,4) (2,5) (2,6) (2,7) 

1 
(28,30,32) 
(1,2,3) 

(28,30,32) 
(1,2,3) 

(28,30,32) 
(1,2,3) 

(28,30,32) 
(1,2,3) 

(28,30,32) 
(1,2,3) 

(28,30,32) 
(1,2,3) 

2 
(69,70,71) 
(4,6,8) 

(75,80,85) 
(4,6,8) 

(75,80,85) 
(4,6,8) 

(75,80,85) 
(4,6,8) 

(75,80,85) 
(4,6,8) 

(16,18,26) 
(9,11,13) 

3 
(16,18,26) 
(6,8,13) 

(16,18,26) 
(6,8,13) 

(16,18,26) 
(6,8,13) 

(16,18,26) 
(6,8,13) 

(16,18,26) 
(6,8,13) 

(16,18,26) 
(6,8,13) 

4 
(7,8,15) 
(4,6,8) 

(7,8,15) 
(4,6,8) 

(7,8,15) 
(4,6,8) 

(7,8,15) 
(4,6,8) 

(7,8,15) 
(4,6,8) 

(7,8,15) 
(4,6,8) 

5 
(78,87,105) 
(8,10,12) 

(16,18,26) 
(5,8,11) 

(56,58,66) 
(9,11,16) 

(38,40,42) 
(4,6,8) 

(44,48,58) 
(3,5,10) 

(90,95,115) 
(10,13,16) 

∑ 𝑐̃𝑖𝑗

5

𝑖=1

 (198,213,249) (142,154,184) (182,194,224) (164,176,200) (170,184,209) (157,169,214) 

𝑇̃𝑗 (8,10,12) (6,8,13) (9,11,16) (6,8,13) (6,8,13) (10,13,16) 

Since the minimum value of total fuzzy cost corresponds to (2,3), thus (2,3) are the required two potential sites for the two 
hospitals. Again using Step 2, we evaluate the third potential site for hospital. 

Combination of sites (2,3,4) and (2,3,7) do not satisfy the budgetary constraint (6).  

Combination of sites (2,3,5) and (2,3,6) do not satisfy constraint (8).  
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Hence the only combination left satisfying all the constraints is (2,3,1), represented in Table 6. 

Table 6: Total Fuzzy Cost and Maximum Fuzzy time for three hospital sites 

Hospital Sites → 
Accident Prone 
Areas ↓ 

(2,3,1) 

1 
(28,30,32) 
(1,2,3) 

2 
(69,70,71) 
(4,6,8) 

3 
(16,18,26) 
(6,8,13) 

4 
(7,8,15) 
(4,6,8) 

5 
(16,18,26) 
(5,8,11) 

∑ c̃ij

5

i=1

 (136,144,170) 

T̃j (6,8,13) 

Thus, Table 7 represents the current solution obtained for 0th iteration.  

Table 7: Current and Optimal Solution for 0th Iteration 

Current Solution (X0
1, Y0

1) Optimal Solution (X0
1, Y0

1) 

Variables 𝑥𝑖𝑗 , 𝑦𝑖𝑗 𝐶̃(𝑋0
1) 𝑇̃(𝑋0

1) Variables 𝑥𝑖𝑗 , 𝑦𝑖𝑗 𝐶̃(𝑋0
1) 𝑇̃(𝑋0

1) 

y2, y3, y1 

x12, x21, x32, x42, 
x53 

(136,144, 170) (6,8,13) y2, y3, y1 

x12, x21, x32, x42, 
x53 

(136,144, 170) (6,8,13) 

 

1st Iteration: 

As the combination of hospital sites in 0th iteration is (2,3,1), thus we obtain, two Tabu lists given in Table 8.  

Table 8: Two Tabu Lists for 1st Iteration 

Tabu List for Drop Tabu List for Add 

{y3, y1} {y2} 

Using Step 2, we establish the new combinations with (3,1) as (3,1,4), (3,1,5), (3,1,6) and (3,1,7). Combination of sites 
(3,1,4) do not satisfy constraint (6) and (3,1,6) do not satisfy constraint (8). Combinations (3,1,5) and (3,1,7) satisfy all the 
constraints as shown in Table 9. 

      Table 9: Total Fuzzy Cost and Maximum Fuzzy time for 1st Iteration 

Hospital Sites → 
Accident Prone Areas ↓ 

(3,1,5) (3,1,7) 

1 
(38,40,42) 
(5,8,11) 

(38,40,42) 
(5,8,11) 

2 
(69,70,71) 
(4,6,8) 

(16,18,26) 
(9,11,13) 

3 
(75,80,85) 
(5,8,11) 

(56,58,66) 
(8,10,12) 

4 
(28,30,32) 
(6,8,13) 

(56,58,66) 
(9,11,13)) 

5 
(16,18,26) 
(5,8,11) 

(16,18,26) 
(5,8,11) 
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∑ 𝑐̃𝑖𝑗

5

𝑖=1

 (226,238,256) (182,192,226) 

𝑇̃𝑗 (6,8,13) (9,11,13) 

From above table, 𝐶̃(𝑋1
1) = (182, 192, 226) is greater than the total fuzzy optimal cost from 0th iteration𝐶̃(𝑋0

1). Thus the 

optimal solution remains the same as shown in Table 10. 

Table 10: Current and Optimal solution for 1st Iteration 

Current Solution (𝑋1
1, 𝑌1

1) Optimal Solution (𝑋0
1, 𝑌0

1) 

Variables 𝑥𝑖𝑗 , 𝑦𝑖𝑗 𝐶̃(𝑋1
1) 𝑇̃(𝑋1

1) Variables 𝑥𝑖𝑗 , 𝑦𝑖𝑗 𝐶̃(𝑋0
1) 𝑇̃(𝑋0

1) 

Y3, y1, y7 

x11, x27, x37, x41, 
x53 

(182, 192, 226) (9,11,13) y2, y3, y1 

x12, x21, x32, x42, 
x53 

(136,144, 170) (6,8,13) 

2nd Iteration: 

As the combination of hospital sites in 1st iteration is (3,1,7), thus we obtain, two Tabu lists given in Table 11.  

Table 11: Two Tabu Lists for 2nd Iteration 

Tabu List for Drop Tabu List for Add 

{y1, y7} {y3} 

Proceeding as in above iteration we obtain the results up to 6th iteration. After 6th iteration the result revisits the 2nd 
iteration solution. Results of all iterations are shown in Table 12. 

Table 12: Iterative Solutions for 1st Non Dominated Fuzzy Efficient Solution 

Iterative 
Solutions 

Variables xij’s and yj’s in the 
order of appearance 

Total Fuzzy 

Cost𝐶̃(𝑋𝑟
1) 

 Fuzzy 

Time𝑇̃(𝑋𝑟
1) 

Tabu List 
for Drop 

Tabu List 
for Add 

Optimal 
solution 

(𝑋0
1, 𝑌0

1) x12, x21, x32, x42, x53 

y2,y3,y1  

(136, 144,170) (6,8,13) { y3,y1 } {y2} (𝑋0
1, 𝑌0

1) 

 

𝑋1
1, 𝑌1

1 x11, x27, x37, x42, x53 

y3,y1,y7 

(182, 192,226) (9, 11, 13) {y1,y7 } {y3} (𝑋0
1, 𝑌0

1) 

𝑋2
1, 𝑌2

1 x12, x27, x32, x42, x51 

y1,y7,y2 

(145,261,204) (9, 11, 13) {y7,y2} {y1} (𝑋0
1, 𝑌0

1) 

𝑋3
1, 𝑌3

1 x12, x27, x32, x42, x55 

y7,y2,y5 

(105, 114,141) (9, 11, 13)  {y2,y5} {y7} (𝑋3
1, 𝑌3

1) 

𝑋4
1, 𝑌4

1 x12, x21, x32, x42, x55 

y2,y5,y1 

(158, 166,186) (6,8,13) {y5,y1} {y2} (𝑋3
1, 𝑌3

1) 

𝑋5
1, 𝑌5

1 x11, x27, x37, x45, x55 

y5,y1,y7 

(176, 186,208) (9, 11, 13) {y1,y7} {y5} (𝑋3
1, 𝑌3

1) 

𝑋6
1, 𝑌6

1 x12, x27, x32, x42, x51 

y1,y7,y2 

(145, 261,204) (9, 11, 13) {y7,y2} {y1} (𝑋3
1, 𝑌3

1) 

The Iteration procedure terminates at 6th iteration as the 2nd iteration result is repeated at 6th iteration. 

2nd NON-DOMINATED FUZZY EFFICIENT SOLUTION: 

As 𝑇̃𝑗 for the 1st non-dominated fuzzy efficient solution is (9, 11, 13), therefore we replace all 𝑡̃𝑖𝑗’s ≥ (9, 11, 13) by arbitrary 

large fuzzy number (M, M, M) as shown in Table 13. 
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Table 13: Tableau Representation of Numerical Problem for 2nd Non Dominated Solution. 

Hospital 
Sites → 
Accident 
Prone 
Areas ↓ 

1 2 3 4 5 6 7 

1 
(38,40,42) 
(5,8,11) 

(28,30,32) 
(1,2,3) 

(44,48,58) 
(M,M,M) 

(117,120,123
) 
(4,6,8) 

(175,177,188
) 
(8,10,12) 

(165,168,177
) 
(6,8,13) 

(143,150,156
) 
(5,7,9) 

2 
(69,70,71) 
(4,6,8) 

(75,80,85) 
(4,6,8) 

(128,130,132
) 
(6,8,13) 

(128,130,132
) 
(5,7,9) 

(165,168,177
) 
(5,8,11) 

(133,140,147
) 
(8,10,12) 

(16,18,26) 
(M,M,M) 

3 
(75,80,85) 
(5,8,11) 

(16,18,26) 
(6,8,13) 

(188,195,210
) 
(3,5,7) 

(69,70,71) 
(5,8,11) 

(133,140,147
) 
(M,M,M) 

(128,130,132
) 
(M,M,M) 

(56,58,66) 
(8,10,12) 

4 
(56,58,66) 
(M,M,M) 

(7,8,15) 
(4,6,8) 

(69,70,71) 
(M,M,M) 

(75,80,85) 
(M,M,M) 

(28,30,32) 
(6,8,13) 

(152,159,169
) 
(5,8,11) 

(195,210,230
) 
(4,6,8) 

5 
(78,87,105
) 
(8,10,12) 

(90,95,115) 
(M,M,M) 

(16,18,26) 
(5,8,11) 

(56,58,66) 
(M,M,M) 

(38,40,42) 
(4,6,8) 

(44,48,58) 
(3,5,10) 

(200,220,240
) 
(M,M,M) 

Set Up 
Cost 

(90,95,115
) 

(290,300,310
) 

(670,700,730
) 

(760,790,850
) 

(380,392,428
) 

(178,196,216
) 

(460,490,550
) 

After applying the iterations as done for the 1st Non Dominated Fuzzy efficient solution, the 2nd Non Dominated fuzzy 
efficient solution obtained is shown below in Table 14. 

Table 14: 2nd Non Dominated Fuzzy Efficient Solution 

2nd Efficient Solution Variables xij’s and yj’s Total Fuzzy Cost 𝐶̃(𝑋2) Total Fuzzy Time 𝑇̃(𝑋2) 

(X2, Y2) x12, x21, x32, x42, x53 

y2,y3,y1 

(136,144,170) (6,8,13) 

3rd NON-DOMINATED FUZZY EFFICIENT SOLUTION: 

Proceeding in the similar way as in 2nd Non Dominated fuzzy efficient solution, we replace all 𝑡̃𝑖𝑗’s ≥ (6, 8, 13) by arbitrary 

large fuzzy number (M, M, M) as shown in Table 15. 

Table 15: Tableau Representation of Numerical Problem for 3rd Non Dominated Solution 

Hospital 
Sites → 
Accident 
Prone 
Areas ↓ 

1 2 3 4 5 6 7 

1 
(38,40,42) 
(5,8,11) 

(28,30,32) 
(1,2,3) 

(44,48,58) 
(M,M,M) 

(117,120,123
) 
(4,6,8) 

(175,177,188
) 
(M,M,M) 

(165,168,177
) 
(M,M,M) 

(143,150,156) 
(5,7,9) 

2 
(69,70,71) 
(4,6,8) 

(75,80,85) 
(4,6,8) 

(128,130,132
) 
(M,M,M) 

(128,130,132
) 
(5,7,9) 

(165,168,177
) 
(5,8,11) 

(133,140,147
) 
(M,M,M) 

(16,18,26) 
(M,M,M) 

3 
(75,80,85) 
(5,8,11) 

(16,18,26) 
(M,M,M) 

(188,195,210
) 
(3,5,7) 

(69,70,71) 
(5,8,11) 

(133,140,147
) 
(M,M,M) 

(128,130,132
) 
(M,M,M) 

(56,58,66) 
(M,M,M) 

4 
(56,58,66) 
(M,M,M) 

(7,8,15) 
(4,6,8) 

(69,70,71) 
(M,M,M) 

(75,80,85) 
(M,M,M) 

(28,30,32) 
(M,M,M) 

(152,159,169
) 
(5,8,11) 

(195,210,230) 
(4,6,8) 

5 (78,87,105
) 

(90,95,115) 
(M,M,M) 

(16,18,26) 
(5,8,11) 

(56,58,66) 
(M,M,M) 

(38,40,42) 
(4,6,8) 

(44,48,58) 
(3,5,10) 

(200,220,240) 
(M,M,M) 
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(M,M,M) 

Set Up 
Cost 

(90,95,115
) 

(290,300,310
) 

(670,700,730
) 

(760,790,850
) 

(380,392,428
) 

(178,196,216
) 

(460,490,550) 

After applying the iterations, the 3rd Non Dominated Fuzzy efficient solution obtained is shown below in Table 16. 

   Table 16: 3rd Non Dominated Fuzzy Efficient Solution 

3rd Efficient Solution Variables xij’s and yj’s Total Fuzzy Cost 𝐶̃(𝑋3) Total Fuzzy Time 𝑇̃(𝑋3) 

(X3, Y3) x12, x21, x31, x42, x53 

y2,y3,y1 

(195,206,229) (5,8,11) 

 

The 4th Non Dominated Fuzzy efficient solution shows no improvement in fuzzy time. Therefore, the procedure of finding 
fuzzy efficient solution terminates. All fuzzy efficient solutions are given in Table 17. 

Table 17: All Efficient Solutions of the Numerical Problem 

Efficient Solution Variables xij’s and yj’s Total Fuzzy Cost  Total Fuzzy Time  

(X1, Y1) x12, x27, x32, x42, x55 

y7,y2,y5 

(105, 114,141) (9,11,13) 

(X2, Y2) x12, x21, x32, x42, x53 

y2,y3,y1 

(136,144,170) (6,8,13) 

(X3, Y3) x12, x21, x31, x42, x53 

y2,y3,y1 

(195,206,229) (5,8,11) 

SIGNIFICANCE OF THE PRESENT STUDY 

1) As the hospital sites are often planned intuitively in real life, the government agencies can better plan the location 
of the hospital sites using the above algorithm especially around the accidental prone areas or along the routes 
where hazardous material is transported, etc. 

2) The solution obtained using the proposed Tabu search algorithm is very close to optimality and is among the 
most effective to tackle the difficult real life problems at hand. Moreover, the optimal solution obtained is fuzzy in 
nature, which is more realistic. 

3) The algorithm does not require any deep knowledge and understanding of complex concepts like linear 
programming or goal and parametric programming, etc 

CONCLUSION 

Using the traditional approaches, we obtain a single optimal solution. Howsoever, with the help of the above algorithm and 
the numerical example, we can easily see that we get three efficient solutions using Tabu search algorithm. Thus clearly, 
using Tabu search algorithm provided above, we get more choices for decision making as shown below in Table 18. Of 
the below listed solutions, obtained with the above numerical problem, if we observe, the total transportation cost 
increases from top to bottom, whereas, the total transportation time decreases. As a decision maker to choose a hospital 
site near an accidental area, we would choose the one listed in the last row as the most suitable solution, as for choosing 
a hospital site, the most important parameter would be the minimum transportation time rather than the transportation cost 
involved. 

Table 18: Optimal Solutions using Tabu Search 

Optimal Solutions obtained using Tabu algorithm 

Variables xij, yj Total Fuzzy Cost C̃ Total Fuzzy Time T̃ 

x12, x27, x32, x42, x55 

y7,y2,y5 

(105, 114,141) (9,11,13) 

x12, x21, x32, x42, x53 

y2,y3,y1 

(136,144,170) (6,8,13) 

x12, x21, x31, x42, x53 (195,206,229) (5,8,11) 
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y2,y3,y1 

FUTURE WORK 

1) The present paper has been solved using a sample numerical problem due to limitation of time and process 
involved in getting the data from government agencies. In future, the numerical problem discussed can be 
extended to a real life problem, by gathering the required data from concerned agencies. 

2) The present paper has solved the algorithm using sample hypothetical data. Though the performance of the 
algorithm was found to be satisfactory, but it needs to be validated using the real life example data. In future, the 
algorithm would be validated in terms of solution quality, computation time, sensitivity to parameter setting and 
problem characteristics, etc., using the real life example data. 

3) Instead of triangular fuzzy numbers; intuistic fuzzy numbers or LR type fuzzy numbers can be used to solve the 
numerical problem. 
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