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ABSTRACT 

In this paper, a finite difference scheme using cubic splines has been discussed to find the numerical solution for a class 
of singular two point boundary value problems for certain ordinary differential equations. The cubic spline approximation 
leads to the tridiagonal system of equations, which can be solved using Newton’s method. Second order convergence of 
the method has been established for quite general conditions. Two numerical examples are given to demonstrate the 
method and verify the second order accuracy.  
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1 INTRODUCTION 

Mathematical research on the cubic spline functions and their application to the numerical solution of the differential 
equations has developed rapidly in the last few decades. The main advantages of using a cubic spline collocation 
procedure are that the governing matrix system obtained is always tridiagonal and the requirement of a uniform mesh is 
not necessary. It appears that the cubic spline approximation possesses some of the advantages of finite element 
techniques without the disadvantages of high computing cost and complex problem formulation.  

Consider the class of singular two-point boundary value problems 

( ( )  )   ( ) (   ),      ,        (1) 

y(0)=A,      ( )       ( )   ,       (2) 

where    ,     and  ,   finite constants. We assume that  ( ) satisfies the following conditions 

(A) (i)    ( )    on (   -, 

(ii)   ( )    (   -, 

(iii)  ( )     ( ) on ,   -,     and for some    ,  ( )    ( )⁄  is analytic in *   | |   +. 

Further we assume 

(B) for (   )  *,   -   +,  (   ) is continuous,     ⁄  exists, it is continuous and     ⁄   . 

Existence-uniqueness of the problem (1) for general non-negative function  ( ) satisfying conditions (A)(i)–(iii) with 

boundary conditions  ( )      and  ( )      has been established in Ref. [8]. Existence-uniqueness for more general 

problem has been established in Ref. [6] with non-linear boundary condition at    . 

Singular two-point boundary value problems have been considered by various authors. Some second order Ref. [1, 2, 5, 
7, 9, 11-13] as well as fourth-order Ref. [1, 3, 4, 10] convergent methods have been developed. Most of the authors have 

developed methods for the function  ( )      ,           and the boundary conditions  ( )      and  ( )     . 

In this article, second order spline method described in Ref. [7] are further extended to a class of non-negative functions 
 ( ) satisfying conditions (A)(i)–(iii) with boundary conditions (2). The order of accuracy of the method has been 

established for general class of functions  ( ) and under quite general conditions on   (   ). Numerical examples for 

general functions  ( ) are given to illustrate the method and verify the order of accuracy.  

2 DESCRIPION OF THE SPLINE METHOD  

For a positive integer      , we consider a general non-uniform mesh over ,   -:                             . 

Denote                (  ),     (     ) etc. We write 

( ( ))  ( ( )  )  
    

  
(    )  

  

  
(      )              .       (3) 

It is obvious that  

[
 

 ( )
( ( )  ) ]

  

        

and 
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 ( )
( ( )  ) ]

    

            

Multiplying Equation (3) by  ( ) and then integrating from   to   , we get 

    
   ( )  ( )  

    

  
∫ (    ) ( )  

  

 

 
  

  
∫ (      ) ( )  

  

 

                                                                                      ( ) 

To get spline approximation in the interval (       ), we divide equation (4) by  ( ), integrating from      to   and then 

setting interpolating condition  (  )    , we get 

 ( )       (           )∫    ( )  
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where  

   [∫    ( )  
  

    

]

  

                                                                                                                                                                                ( ) 
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)
  

    

(      ) ( )    

   
  ∫ (∫    ( )  

 

    

)
  

    

(    ) ( )    

Setting       in equation (5) we get the spline in the interval (       ). Now using Taylor’s expansion 

 ( )     (    )  
  

 

 
(    )

 
  

    
 

 
(    )

 
    (  )       (7) 

where    lies between   and   ,  (  )    ,  
 (  )    

 , etc., we approximate   
 ,    

  and    as follows 

  
  (       
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   ⁄ )(     
       

 ), 

   
        

 ,           (8) 
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. 

Substituting expression given in (7), (8) in equation (5) and using continuity conditions for   ( ) at mesh point    and 

setting        ̅  ,      ̅,        ̅  , we get the three point finite difference approximation as: 

   ̅ ̃    (  ̅    ̅  ) ̃    ̅   ̃       ̃       ̃     ̃           ( )(   )     (9) 

where 

         
   ̅      ⁄ , 

    [(     
   ̅        

   ̅)  (      
   ̅      ⁄       

   ̅   ⁄ )  (  
   ⁄ ){(      

       
 )  ̅   (     
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 ]. 

For the boundary condition   ( )       ( )   , we require one more difference equation i.e. for    . Using equation (4) 

for the interval (       ) and the boundary condition at    , and setting        ̅  ,      ̅, we get  

   ̅ ̃    (  ̅   (   )⁄ ) ̃     ̃     ̃        ⁄         (10) 

where 

      ̅[     
       

   ⁄  (  
   ⁄ )(      

       
 )], 
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   ̅   ⁄ . 

2.1 Truncation Error 

Consider the mesh ratio parameter          ⁄  then we have           ,             . Using Taylor expansion 

given by equation (7) for  ( ) in equation (6) and substituting the expression for      and then expanding in Taylor series, 

we get, 
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    ) (  )   ]                                                                           (  ) 

where       ⁄ ,      (   )   ⁄ ,        ⁄  and        
   

( )
  ⁄         . Similarly 
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where          ⁄ . Now substituting the expressions for     ,      in      
 ,      

 ,      
  and expanding in Taylor series, we 

get the following: 
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Substituting (11)-(18) in equation (9) and simplifying then for difference scheme (9), we get the truncation error 

   
 

    
  

 (    
 )  

 [  
   

  
 

  
  

  {(
  

 

  
)

 

 
   

  

  
}   ]                                                                                                          (  ) 

Similarly the truncation error    in (10) can be written as: 
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}   ]                                                                                                                         (  ) 

3 CONVERGENCE OF THE METHOD 

In this section, we show that under quite general conditions this method is second order convergent. Let  ( ̃)  

( ̃       ̃ ) ,  ̃  ( ̃       ̃ )  and   (             ) , then the difference scheme (9)-(10) can be expressed in matrix 

form as  

  ̃    ( ̃)   ,            (21) 

where,   (   ) and   (   ) are (   ) tridiagonal matrices with  

          ̅,    ( ) ,            ̅  ,    ( )(   ),      (  ̅    ̅  ),    ( )(   ),        ̅   (   )⁄ , 

        ,    ( ) ,           ,    ( ) ,           ,    ( )(   ), 

      ̅     ̃ ,        ⁄ . 

Now let   (       )  denote the exact solution then we can write  

     ( )     .           (22) 

From equation (21) and equation (22), we get the error equation 

(    )   ,           (23) 

where   (       ) ,    ̃    (       ) ,  ( ̃)   ( )    ,       *       +, (where          ⁄   ). 

Since     ,      ,     ,      for sufficiently small mesh size, it is easy to see that      and the matrices   and 

     are irreducible, monotone and hence    , (    )   exists, is nonnegative and (    )      . 
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Let   (     ) and   (       )     denote the vector of row-sum of  . Also let   (       ) , where    

(   ⁄ )    (    )  ⁄  and   (       )    . We next obtain the bound for     (   
  ). Since     ,      and 

for sufficiently small   (uniform mesh size) 

   
 

  
  

         ( )(   )  

then from       , we get, 

∑
 

   
  

    
  

   

   

       
  

 
 

 

 
        ( )                                                                                                                                     (  ) 

Let there exist constants   ,    ( )  such that | ( )|    , for    ( ) , and       then for an uniform mesh and for 

sufficiently small  , we get, 

|  |   
    

 

  
       ( )(   )                                                                                                                                                                (  ) 

and  

|  |   
  

   
                                                                                                                                                                                                    (  ) 

where  

  
 

 
[        ,   -| 

 ( )  ( )⁄ |    *   ,   -| 
 ( )  ( )⁄ |      ,   -| 

  ( )  ( )⁄ |+]. 

Now since      ̅ and     (   )⁄ , with the help of       , we obtain, 

    
          ̅      ⁄⁄     

     
     (   )⁄         ( ) ,      (27) 

and  

    
       ⁄         ( ) .          (28) 

In view of (    )      , we have ‖ ‖  ‖   | |‖  and with the help of equations (24)-(28), we get, 

|  |       

where     , (   )⁄      ⁄   - and hence 

‖ ‖   (  ). 

Theorem 1 Assume that  (   ) satisfies (B) and  ( ) satisfies conditions in (A). Then the difference scheme (9)-(10) for 

  ,   ) based on an uniform mesh for the boundary value problem (1)-(2) are of second order accuracy for sufficiently 

small   provided  ′′,    and   are bounded on (   -. 

4 NUMERICAL ILLUSTRATIONS 

To illustrate the method and to verify the order of convergence of the method for general non-negative functions  ( ), we 

consider two example of singular boundary value problems. 

Example 1 

   (    )     (    (   )) , 

 ( )   ,  ( )    ( )    , 

with exact solution  ( )     (  ). 

 

Example 2 

(    )  (      )     (      (   )   ) (    ),  

 ( )       ,  ( )     ( )        , 

with exact solution  ( )     (    ). 
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Table I: Maximum absolute error for example-1 

    0.25 Order 0.50 Order 0.75 Order 

16 4.99(-2)
a 

- 5.06(-2) - 5.13(-2) - 

32 1.29(-2) 1.95 1.31(-2) 1.95 1.33(-2) 1.95 

64 3.24(-3) 1.99 3.29(-3) 1.99 3.34(-3) 1.99 

128 8.12(-4) 2.00 2.85(-4) 2.00 8.35(-4) 2.00 

256 2.03(-4) 2.00 2.06(-4) 2.00 2.09(-4) 2.00 

512 5.08(-5) 2.00 5.16(-5) 2.00 5.22(-5) 2.00 

a
4.99(-2) = 4.99 × 10

-2 

 Table II: Maximum absolute error for example-2 

    0.25 Order 0.50 Order 0.75 Order 

16 4.73(-3)
 

- 6.25(-3)
 

- 8.48(-3)
 

- 

32 1.19(-3) 1.99 1.57(-3) 1.99 2.13(-3) 1.99 

64 2.97(-4) 2.00 3.93(-4) 2.00 5.33(-4) 2.00 

128 7.43(-5) 2.00 9.82(-5) 2.00 1.33(-4) 2.00 

256 1.86(-5) 2.00 2.46(-5) 2.00 3.33(-5) 2.00 

512 4.65(-6) 2.00 6.14(-6) 2.00 8.33(-6) 2.00 

 

Maximum absolute errors and order of convergence (accuary) for examples 1 and 2, have been displayed in Tables I and 
II respectively for three value                of  , which show that the method works well and is of second-order accuracy.  
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