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ABSTRACT 

To have an accuracy and fast diagnosis of brain death is very urgent for patients especially for distinguishing brain death 
from coma circumstance. Electroencephalogram is a method of invasive recording brain signals with high temporal 
resolution. So in clinics, EEG is taken as the most reliable method to estimate the brain death state of affairs. The 
objective of this paper is to find out the statistical rule on brain death and coma detection through EEG signal processing 
technology analysis on 20 patients’ medical data (10 for brain death group, 10 for coma group) and then hope to give aid 
diagnosis conclusions in clinical practice. First, the independent component analysis (ICA) has been applied to solve 
artifact removal problem combined with wavelet decomposition method to compute the signal noise ratio (SNR). 
Moreover, the Fourier transform is calculated to compare the power spectrum of the two groups. In addition, we applied 
the multi-scale permutation entropy into comparison with complexity of brain death and coma patients’ data in different 
brain inter-rhythms. Finally, the Wilcoxon rank sum has been used to test their statistics significant differences. We 
proposed our understanding and conclusions on this experiment results. Specially, the real-time brain death and coma 
patients’ distinguishing is discussed based on parallel computational idea such as cloud computing on Hadoop. 
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INTRODUCTION 

Brain death is defined as the irreversible loss of all functions of the brain, including the brainstem. The three essential 
findings in brain death are coma, absence of brainstem reflexes and apnoea [1]-[2]. In clinics, death of brain therefore 
qualifies as death, as the brain is essential for integrating critical functions of the body. The equivalence of brain death with 
death is largely, although not universally, accepted [3]-[4]. It is clear that the diagnosis of brain death is very important [2]. 
Guidelines for determining brain have been proposed for example the apnea test and brainstem function detection [5]. 
Notably, it is commonly accepted that EEG might serve as an auxiliary and useful tool in the confirmatory tests, for both 
adults and children [6]-[9].  

EEG has been effectively used into diagnosis diseases in clinics and related research area [10]-[12]. It has several nice 
features forwarding the applications in clinical practice and science research. Non-invasion feature makes it easily 
accessible and safe to be used in used. Specifically, patients in the deep coma state could be recorded the frontal area of 
head without big operations, decreasing the risks resulted from movement. High time resolution (milliseconds) feature 
enables it to catch the real-time dynamic changes of neural activity. Simple and friendly operation steps feature motivates 
wide-use of EEG in both theory and practice area such as disease diagnosis and classification. EEG can record 
continuous signals where is much safer than the test on patients’ spontaneous breathing with unplugging the ventilator 
intermittently. 

Even though there are such several strong points in EEG application for brain death detection, the reasons for 
improvement of EEG analysis on brain death diagnosis should be paid attention to are summarized as follows. 

1). There are diagnosis mistakes in brain death EEG confirmation. In a Chinese training program [13] on EEG for brain 
death determination and improvement, all 114 trainees came from 72 3A grade hospitals in which 66 trainees were from 
department of neurology and 22 ones were from electrophysiology. The total error rate was 9.19% among which the error 
rate of parameter setting was the highest (11.40%), followed by those of result determination (10.44%), recording 
techniques (10.25%), environmental requirements (7.46%) and pitfalls (3.68%). We can see that the doctors with 
professional knowledge of medicine would make mistakes of operations on EEG even if during the period of training 
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program. In the clinic, the accuracy and in time diagnosis of disease for patients in coma is so urgent that the improvement 
of interpretation of clinical EEG is so necessary and needs to be highly emphasized. 

2). Distinguish from coma and brain death should be confirmed. Patients in coma may or may not progress to brain death 
and they often show symptoms of absence of movement, and breathing occasionally less brainstem activity, whose clinic 
performance is similar to brain death. But what is the difference inner mechanism and how come we don’t consider a 
coma to be temporary brain death. We should understand the point in definition of brain death, irreversible loss of 
functions of the brain, while coma is temporary loss of conscious but still alive [14]-[15]. 

3). Importance and related works on EEG signal processing need to be applied effectively. Nowadays, there are not only 
classical EEG signal processing methods but also some newborn algorithms have been proposed by researchers such as 
the high-order multi-way array analysis, tensor decomposition [16]-[17]. 

A brain death diagnosis is often made according to some precise criteria following a well-defined procedure [18]. Since the 
process of brain death determination usually takes a long time and involves certain risks, a practical yet safe method 
would be desirable for the pre-test of the patient’s brain-state status. In our paper, a signal processing method has been 
put forward in brain death and coma EEG analysis. For preprocessing, the ICA algorithm is used to remove the artifacts 
and then the wavelet decomposition is applied into second step noise reduction, calculating the SNR factor. For 
processing, the energy of each group is compared through Fourier transform. And then we calculate the multi-scale 
permutation entropy in grasping the brain complexity for different inter-rhythms.  To estimate the significance difference 
between the two groups, we employed the Wilcoxon rank sum method into the two not Gaussian distribution datasets. 
Actually, distinguish of brain death and coma group can be fulfilled in our processing method. 

1. Signal preprocessing: Independent component analysis and wavelet 
decomposition 

For EEG signal preprocessing, there is no standard method because of the randomness in noise types from the 
environment and robustness in subjects’ statements. So we applied the ICA algorithm into artifact removal and then a 
further wavelet decomposition was processed, estimating the SNR (signal noise ration) and MSE (minimum square error) 
parameters. Here, we chose the data length for 180 seconds. 

1.1 Data source 

The clinic patients’ data were collected from the year 2007 to 2009 including 34 patients (17 brain death, 17 coma) at a 
third-grade class-A hospital, Shanghai, China. The clinic EEG recorded machine was a portable NeuroScan ESI-64 
system (data structure was .cnt file). There were 9 channels placed on the forehead of patients without movement 
statement. Here, the reference electrodes were located at two ears respectively and an additional channel was taken as 
ground. Specially, EEG recording channels were Fp1, Fp2, F3, F4, F7, F8 and the corresponding locations were shown as 
Fig.1. Sampling rate is 1000Hz. The raw EEG data of each group is shown in Fig.2 (10s data example). The experimental 
procedure was supported by the local ethics committee of the hospital and all collected data were used under access of 
patients’ legal guardians or family. We protected the patients’ privacy too.  

                                (a) Channel location                                                    (b) EEG-guided diagnosis procedure 

Fig.1 Experiment data source 
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(a) Brain death raw EEG data                                                   (b) Coma raw EEG data 

Fig.2 Raw EEG data 

1.2 Independent component analysis 

ICA, a powerful signal processing tool for blind source separation (BSS), could be used to estimate the physiological brain 
sources and in fact, has been often used to reveal the source components of EEG signals and has yielded many 
promising results[19]-[20]. The basic problem of ICA in our current clinic EEG brain signal processing is shown in Fig.3. 
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Fig.3 ICA processing flow in clinic brain EEG signal case. 

Here we simply made the hypothesis that A is a liner system and channel has no influence on signal which is to say, 
observed channel number is equal to signal number. 

The mixing model can be seen as  and separated model is BXY  . The objective of ICA is to find out the 

separated matrix B and then the new vector   TnytyY ,...,1  should be independent as large as possible. Essentially, ICA 

is an optimization problem to solve how the separated independent components are approaching to each source signal 
maximally. We can define the ICA as follows (fig.5 and formula). The basic algorithms in ICA are (MMI) minimum mutual 
information, info-max and MLE (maximum likelihood estimation). 
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Fig.4 The key of ICA. 

1.2.1 MMI 

KL divergence is the best test model for statistic independence. Suppose X is one n-dimensional column vector, p(x) is 

combined probability density functions, 
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1.2.2 info-max 

Ensuring the minimum of mutual information is a basic step of ICA. Entropy is estimation of the uncertainty information. 
The combined entropy is defined as formula 2. 

 

       dxxpxpxxxHXH N log,....,, 21 

                                             

(2) 

In the definition of      XHXHXJ g   ,  gX  is a Gaussian distribution random variable with the same variance of 

X. Clearly, the J(X) could be a good objective function (shown in formula 3). 
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Here, c is covariance matrix,  iic  is the diagonal elements. If the components are irrelevant, the third item in formula 3 will 

be 0. To get the minimum of mutual information, the  i
n

i

x
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iJ   should be maximum. So the objective function could be 

taken as formula 4. 
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1.2.3 MLE 

In EEG signal processing, the only information we could obtain is the observed data X, so the maximum likelihood 
estimation would be the natural selection method. The log likelihood function is shown in formula 5. 
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We calculated the brain mapping components of different groups by ICA, shown in figure 5. 

                                   
(a) brain death group components                          (b) coma group components 

 

Fig.5 Brian mapping components for the two group data 

And then we do the artifact component removal processing. The result of comparison in raw EEG data and artifacts 
removal data are given in figure 6 
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                                        (a) brain death group                                                    (b) coma group 

Fig.6 Comparison between raw EEG and denoised data 
 

1.3 Wavelet decomposition 

‘Wavelet’ could analyze the signal combined with time and frequency domains simultaneously. Through wavelet 
transformation, the signal would be expressed as the linear superposition of wavelet functions clustering. In de-noise 
processing, wavelet could distinguish the part mutation from noise in signal by the analysis in time-frequency domain. The 
flow of algorithm application in our case is shown as fig.7. 

 

Fig.7 The wavelet algorithm flow in brain-coma EEG processing 

Three key steps we should emphasis on are summarized as below. 

Step1 Threshold function and value selection 
Traditionally, two options for threshold functions including hard threshold ding and soft threshold ding could be 

calculated, shown in formula 6. Suppose   is the wavelet coefficient, 

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Start

Select one channel data 

from EEG database

Conduct wavelet decomposition in selected data

Extract wavelet 

coefficients with 

different scales

Calculate their threshold 

Denoising and reconstruction based on the threshold

Evaluate the effect of de-noising

Output the resluts

End



I S S N  2 2 7 7 - 3 0 6 1  
V o l u m e  1 5  N u m b e r  1 1  

I n t e r n a t i o n a l  J o u r n a l  o f  C o m p u t e r  a n d  T e c h n o l o g y   

7194 | P a g e    C o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  

A u g u s t ,  2 0 1 6                                              w w w . c i r w o r l d . c o m  














l

l
l






,0

,
                                                                              (6-1)   

   














l

llww
l






,0

,sgn
                                                                (6-2) 

Formula 6-1 is the hard threshold ding in which if the absolute value of wavelet coefficient is greater or equal to the given 
threshold value, then it remains else define it to 0. Correspondingly, formula 6-2 is the soft threshold ding, greater or equal 
to the given threshold value and then minus l else setting to 0. Four common value selection methods such as fixed 
threshold, stein unbiased estimation, heuristic value and minimax threshold value. Here we the unbiased estimation 
method is applied into threshold value computation. 

Setp2 Wavelet function selection 
There are several wavelet functions to be selected. Each wavelet function is suitable for special signals. For a definite 
signal, if the function is not proper, result will be undesirable even missing some useful information. To meet the de-noise 
need for EEG data, the selection decision should be made through amount of simulation experiments. Based on the 
related work [21]-[22] the B spline function is suitable for EEG noise reduction because its features are higher smoothness, 
better frequency, stronger frequency division, smaller frequency band coherence. 
Setp3 Evaluation of de-noising result 

Here, we use the definition of SNR and MSE to test the result, shown in formula 7. The original data is expressed as ioe  

and the estimating signal is taken as ile . SNR is bigger, MSE is smaller and then the result would be better. 
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In this further step of EEG data noise reduction, the SNR and MSE for brain death and coma groups are given as Tab.1 
respectively. 

Table.1 SNR and MSE for brain death and coma groups 
 

Brain death 

Channel Fp1 Fp2 F7 F3 F4 F8 

SNR 160.6767 169.0563 173.4171 170.5558 159.0727 151.9982 

MSE 0.0015 0.0017 0.0017 0.0813 0.0012 0.0011 

Coma 

SNR 133.9567 128.7573 141.3307 155.1837 144.2426 132.1093 

MSE 0.0036 0.0048 0.0032 0.0169 0.0044 0.0029 

 

2. Signal preprocessing: power spectrum energy, multi-scale permutation entropy 

2.1 Fourier transform and analysis 

The standard Fourier transform is used to estimate the power spectra energy (formula 8) for each group’s data, shown in 

the fig.8. 

                                                                         (8) 

  dttxE
T

TT

22/

2/
lim 

  



I S S N  2 2 7 7 - 3 0 6 1  
V o l u m e  1 5  N u m b e r  1 1  

I n t e r n a t i o n a l  J o u r n a l  o f  C o m p u t e r  a n d  T e c h n o l o g y   

7195 | P a g e    C o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  

A u g u s t ,  2 0 1 6                                              w w w . c i r w o r l d . c o m  

 

Fig.8 comparison on energy of brain death and coma groups 

From the result, it is clear that there is big difference between these groups and the energy amplifier of each channel from 
coma group is quite bigger than brain death group varying time. After the signal processing for EEG recordings, the 
patients could be clarify the features of the two categories. Next step, we would do the quantitative analysis to find out 
more features of distinguishing the brain death and coma groups. The complexity and statistical test have been calculated 
in turns.  

2.2 Multi-scale permutation entropy 

Permutation Entropy is a complexity parameter method based on comparison between adjacent values of time series 
whose performance is similar to other chaotic dynamical systems such as Lyapunov exponent. Unlike some other non-
linear monotonic transformation methods, its features include simple, easier to calcite and stronger anti-jamming capability 
[23]. Multi-scale permutation entropy is a measurement method of finite length time series complexity. Compared with the 
traditional entropy method with fixed scale factor, multi-scale permutation entropy creates a coarse-grained continuous 
time series through the coarse graining transformation. And then calculate the data using entropy which fulfil the changing 
from the single static entropy value to the dynamics entropy sequence [24]. The algorithm flow is given as Fig.8 as well as 
the key functions in formula 9. 

EEG recoding 

data

Coarse-grained

processing

Construct 

sequence

Calculate

entropy
Normalization

Multi-scale

entropy

m




p

Multi-scale permutation entropy 
 

Fig.8 multi-scale permutation entropy algorithm flow 

Coarse-grained processing is got by formula 9-1, permutation probability 9-2 and entropy 9-3. Here, the length of original 
EEG data is L. s is expressed for scale factor, m is the embedding dimension. N corresponds to the number of m! 
permutation cases on the constructed sequence. 
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In neuroscience, EEG frequency [25] has been classified into 4 inter-component and the comparison among each other is 
summarized in Tab.2. 

Tab.2 The features of brain inner-rythms 

Rhythm types Frequency range State Timing 

Alpha 7.5-12.5 Hz Relaxing state, clear, easy to 
focus task, difficult to feel 

tired  

Need long-term 
training 

Beta 12.5-35 Hz Nervous state, sensitive to 
the environment, difficult to 
focus and easy to feel tired  

Occur in clear body 
state 

Theta 3.5-7.5 Hz Deep relaxing state, much 
easier to focus on task, full of 

creativity  

Need training to adjust 
freely  

Delta 0.5-3.5 Hz Sleeping state Occur under deep 
state circumstance  

 

We calculate the multi-scale entropy of EEG data and then reserved the mean entropy value for each channel in different 
groups. The beta rhythm has much to do with the nervous and very clear brain state, so we escape this component to 
compare the two clinic patients’ groups. The results are given as Fig.9. 

 

(a) Entropy value at alpha rhythm 

 

(b) Entropy value at theta rhythm 
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(c) Entropy value at delta rhythm 

Fig.9 Comparison on brain inner-component for each patients’ group EEG data 

From the results, the conclusions could be made. On one side, for the entropy value of each channel in different brain 
rhythms for brain death group patients’ EEG data is bigger than the coma group respectively which is accordance with the 
entropy significance in characterization of the random degree of data. On the other hand, as the rhythm in deeper sleeping 
state, the difference between each group is bigger which is in line with the clinic hypothesis. 

3. Statistical test 

To have a quantitative processing on these two groups EEG data samplings, the statistical test could help vary whether 
the samplings come from the same population. There are two categories of statistical parameters including parameter test 
and non-parameter test. The confrontation between the two methods are explained in Tab.3. 

Tab.3 confrontation between parameter and non-parameter test 

Type Distinctive description Pros and cons 

Parameter test Assume the distribution is 
known, estimate or test the 
population parameters 

Pros: efficiency is high on the known 
distribution sampling. 
Cons: the specific and detailed information 
should be known  

Non-parameter 
test 

No assumption is needed 
including the population 
distribution 

Pros: wide application, easy to grasp 
Cons: if the hypnosis is rejected, the result will 
be low  

 

Upon the differences between parameter and non-parameter test, the second one would be a more flexible option. For the 
EEG data, we have estimated the distribution that they are not normal. Wilcoxon rank sum test is based on the sum of 
sample data rank. The principle of the test is that arrange in ascending series of observations unified rank with the 
hypothesis of taking two samples from one sample dataset. If the hypothesis is true and then the rank should be evenly 
distributed in two samples such even distribution of small, medium and large ranks in the two samples. Else, one sample 
would have smaller rank value (sum of rank is low) and the other sample may have larger rank value (sum of rank is high). 

Wilcoxon rank sum test procedure 

Input: two groups of samples 
Method: 
    1. make hypothesis; 
      H0: two samples are from the same population 
      H1: two samples are from the different population 
    2. mix the ranks, set W is the sum of rank, n1 is for one sample amount and n2 is another sample 
amount. N=n1+n2. 

2

)1(
21




nn
WW  

    3. calculate the sum rank of the smaller group as the test statistical variable T. Suppose the smaller 
amount sample number is n1 and other number of sample amount is n2, n2-n1 and T value are taken 
as test binary table. Alpha is significance parameter. 

  )2/1(*2/)1(*2*1 alphanormNnnT   

    4. get the result based on p value 
Output 
    Mean ranks, sum of ranks and test statistics 
End 

 

The Wilcoxon rank sum test has been used to estimate the brain death and coma EEG data samples. The results are 
shown as Tab.4. 
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Tab.4 Wilcoxon results on different channels 

 

a. coma < brain death 

b. coma > brain death 
c. coma = brain death 

  d. Wilcoxon signed ranks test 
e. based on positive ranks 

From the results, the negative and positive ranks are distributed quite different for each channel on two groups. The p 
value is less than 0.05, which means the H0 should be rejected. We could confirm that these two samples are from 
different population and they are independent samples. 

4. Conclusion 

In our paper, we have do the signal processing including the preprocessing, energy calculation and then the quantitative 
processing method has been analyzed including complexity measurement and statistical test. All the results show the 
difference between the brain death and coma EEG data respectively. We could distinguish the two groups through the 
proposed procedure.  

Future work 
To improve the speed of brain death diagnosis based on EEG signals and application in the clinics, the real-time 
calculation should be considered and the cloud computing technology could be applied into the clinics EEG data 
processing in the era of big data. The parallel platform and cloud computing architecture have been shown in Fig10 –
Fig.11. 

 

Channel  

location 

Ranks Test statistic 

Value Negative ranks Positive ranks Ties Total Channel Z Asymp. Sig. 
(2-tailed) 

 

Fp1 

N 117748
a
 62254

b
 0

c
 180002  

Fp1 

 

-89.019
e
 

 

0.000 
Mean rank 46182.00 42767.25   

Sum of ranks 2718918942.50 1331216058.50   

 

Fp2 

N 133784
a
 46218

b
 0

c
 180002 

 

Fp2 

 

-158.813
e 

 

0.012 

Mean rank 48778.92 34065.31 
  

Sum of ranks 3262919713.50 787215287.50 
  

 

F7 

N 102556
a
 77446

b
 0

c
 180002 

 

F7 

 

-36.178
e
 

 

0.035 

Mean rank 47723.77 45015.04 
  

Sum of ranks 2307056192.00 1743078809.00 
  

 

F3 

N 107844
a
 72158

b
 0

c
 180002 

 

F3 

 

-70.344
e
 

 

0.000 

Mean rank 47723.77 45015.04 
  

Sum of ranks 2573361071.00 1476773930.00 
  

 

F4 

N 130358
a
 49644

b
 0

c
 180002 

 

F4 

- 

145.685
e
 

 

0.017 

Mean rank 48491.08 35836.55 
  

Sum of ranks 3160600101.50 889534299.50 
  

 

F8 

N 118452
a
 61550

b
 0

c
 180002 

 

F8 

 

-97.561
e
 

 

0.031 

Mean rank 47031.65 41093.05 
  

Sum of ranks 2785496457.50 1264638543.50 
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Fig.11 EEG data analysis clouding computing architecture 
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