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ABSTRACT 

Cardiovascular diseases (CVDs) cause 31% of the death rate globally. Automatic accurate segmentation is needed for 
CVDs early detection. In this paper, we study the effect of the registration and initialization of the level set segmentation on 
the performance of extracting the heart ventricles for the short axis cardiac perfusion MRI images, as a result, we propose 
a modified workflow to automatically segment the ventricles by mitigating the levelset initial contour extraction in order to 
improve the segmentation results accuracy. In the registration experiments, the translational transformation was studied 
based on both the spatial and frequency domain. The frequency domain based registration is mainly established based on 
the phase correlation methodology. As for the segmentation experiments, the level set initialization was done through 
extracting the ventricles’ real shape from each slice. Though, the final contour of any frame will be used as the initial 
contour for the next frame. The second initialization strategy was based on defining the initial contour for each frame using 
the polar representation of the image. Two short axis view datasets of cardiac magnetic resonance (CMR) perfusion 
imaging were used in testing the proposed methods. Dice coefficient, sensitivity, specificity and Hausdorff distance have 
been used to evaluate and validate the segmentation results. The system workflow consists of five main modules: 
preprocessing, localization, initial contour extraction, registration, and segmentation. The segmentation accuracy for left 
and right ventricles improved from 72% to 77% and from 70% to 81% using the spatial domain based registration 
algorithm. The polar-based initialization strategy improves the segmentation accuracy from 77% to 81% and from 81% to 
82% for the left and right ventricles respectively. 
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INTRODUCTION  

Cardiovascular diseases (CVDs) are the class of diseases related to heart and blood vessels such as: Coronary heart 
disease, Stroke, Cardiomyopathy, etc. CVDs cause 31% of the death rate globally [1]. Though, an international increase in 
the focus and awareness for the need of early diagnosis procedures. Cardiac Magnetic Resonance Imaging (CMR) has 
been widely adopted to diagnose CVD patients’ in clinical routine. It provides high-resolution imaging and clear tissue 
contrast in addition to avoiding the exposure to the ionizing radiation. Perfusion CMR includes the injection of a special 
dye, often called contrast agent, during the scan in order to highlight the blood pool when good blood supply reaches it, 
which increases the contrast between muscle and blood pool [2].  

Accurate segmentation is the next important step in the workflow of cardiac function evaluation process. Ejection fraction 
(EF), left ventricle volume, and muscle wall thickness are some of the parameters need to be measured precisely to 
evaluate the cardiac function. Calculation of these parameters requires an accurate delineation of muscles and ventricles 
contours. Manual heart contouring by expertise is one solution to this problem but it is an extremely tedious task, time 
consuming, and highly affected by the observer variability. Therefore fully automatic segmentation is an important. 
Moreover, this task is considered challenging due to the high datasets variability caused by MR scanners, motion artifacts, 
different noise sources, poor contrast between left ventricle (LV) and myocardium and complex shape of right ventricle 
(RV). In this study, we will focus our study on the effect of the registration and the active contour initialization on the 
accuracy of the ventricles segmentation task. The Left Ventricle (LV) segmentation meets lots of challenges due to the 
huge variation in size and shape of the LV due to the slice position as well as the heart size variability, the motion artifacts 
as well as the effect of papillary muscles. The RV segmentation is considered more challenging than the LV as it suffers 
from the complex crescent structure, wall irregularities, inhomogeneity and its ill-defined borders [3].  

Several techniques are proposed to perform cardiac segmentation using active contour. Pluempitiwiriyawej et al. [4] 
introduced an automatic initialization approach for the myocardium segmentation, based on thresholding and 
morphological operations. Weijia et al. [5] proposed a scheme for automatic close to boundary initialization for deformable 
models. They generate the initial contour through a labeling/recognition process using Topographic Independent 
Component Analysis (TICA) learning and feature exaction technique. Wu et al. [6] improved the LV segmentation 
accuracy by adding a circle-shape based term to the active contour energy function, representing the LV shape. Li et .al 
[7] proposed a distance regularization term for the level set algorithm in order to maintain the regularity of the level set 
function during its evolution. Khalifa et al. [8] proposed a framework based on registration and level set method to segment 
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the LV, based on the affine-based registration followed by a local B- splines based alignment, to account for local and 
global motion of the heart. Mousa et al. discussed the impact of polar-based initialization and frame time curve selection in 
the LV segmentation [9]. 

Motivated by the challenges in the initialization and registration on the segmentation accuracy, we propose studying the 
effect of these tasks on the ventricles segmentation tasks. This study is achieved through developing a modified workflow 
to automatically segment the LV and RV using level set method. The use of level set theory has provided more flexibility 
and convenience in the implementation of active contours. To the best of our knowledge, the RV segmentation was not 
studied for perfusion MRI due its complexity.  

MATERIALS AND METHODS 

3.1 Datasets 

Two short axis cardiac magnetic resonance (CMR) perfusion datasets have been used for the segmentation performance 
evaluation in this study. The datasets were acquired using the Gradient Recalled-Echo (GR) MR scan protocol. It consists 
of 10 image sequences for 6 different patients. Each sequence is formed of 3 slices named; Basal, medial, and epical for 
different time frames ranged between 32 and 101 time frame.  

3.2 Experimental Work 

Our study consists of five main steps: Preprocessing, Heart Localization, Initial Contour Extraction, Registration, and 
Segmentation.  

3.2.1 Preprocessing and localization step 

The aim of the denoising step is to enhance the image quality without affecting image details. Firstly, the MR images are 
filtered using Gaussian filter in order to remove the noise while preserving the image’s edges, as the MRI imaging related 
noise could be assumed to follow the Gaussian distribution [10]. The images are then analyzed to define the heart region, 
considered as the region of interest (ROI), through assuming the heart ventricles as two intersected circles (localization 
step). In our study, we used the Circular Hough transform to search for the LV as well as the RV [11].  

3.2.2 Initial contour extraction 

To the best of our knowledge, most of the segmentation algorithms in the literature use a circular or elliptic shape in the 
center of the slice as the initial contour for the LV [3,4,6]. Nevertheless, these assumptions will fail specially in case of 
abnormality and muscle deficiency. In addition, it is considered an inappropriate assumption for RV shape. Therefore after 
Finding the ROI (localization step), we propose finding an initial contour that roughly reflects the shape, size and position 
of the LV and RV heart related to each slice. In this step, we propose using the intensity time curve information for 
initialization.  The proposed algorithm (Algorithm 1) can be summarized as follows:  

a) The intensity time curve, shown in Figure 1, is calculated for the ROI selected by the localization step for each slice. 
The intensity time curve is defined as the average high intensities in each time frame, the high intensity is defined as the 
intensity greater than the threshold (T) calculated as the maximum of threshold calculated based on Otsu’ method and 
intensity value calculated at 80% of the area under intensity probability density function curve.  

b) The best frame is selected from the intensity time curve through sorting the peaks of the first one third of the cardiac 
cycle. The peaks of the intensity time curve reflect the frames with high intensities due to the maximum filling of the 
contrast agent in RV and LV respectively, occurring at the first one third of the cardiac cycle. Therefore, the best frames to 
extract the initial contour for both RV and LV respectively are founded in this period.  

c) The selected frame is converted from gray level to binary image using the threshold T.  

d) Finally, a series of morphological operations (opening, closing) were used to remove unwanted pixels. The initial 
extracted contour is the contour of remaining object, as shown in Figure 2. 

Algorithm 1: Initial Contour Extraction 

1: input: ROI time frames related to each slice  

2: output: initial contour for LV, and RV 

3: calculate the intensity time curve for the whole slice 

4: detect the peaks of the curve 

5: save peaks at first one third of the curve time 

6: select the max. two peaks (first one, in location, related to best frame for RV, and the  

    other to LV frame)                  

7: threshold the selected frame using T value 

8: remove unwanted pixels using morphological operations 

9: the largest connected object contour is target contour 
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Fig 1: the intensity time curve 

 

 

Fig 2: Initial contour extraction steps for LV (first row), and RV (second row) 

3.2.3 Registration step 

It is the process of aligning all time frames to the automatically selected reference frame for each slice. Though, two 
different registration algorithms were studied, to highlight the effect of the registration on the accuracy of segmentation. 
For simplicity, the translational transformation is the only studied, based on both spatial and frequency domains. The 
frequency based registration is mainly calculating the Fourier shift between 2 images corresponding to that in the spatial 
domain, which is represented formed as a linear phase difference. Though, the phase correlation between two images I1 
and I2 can be defined as the normalized cross power spectrum between A and B as in the following equation: 

                      ………………. (1) 

where A, B are the Fourier transform of I1 and I2 respectively [12].  

3.2.4 Segmentation using active contour 

The aim of segmentation is to extract the LV and RV using the level set algorithm [13]. This algorithm requires a well 
localized initial contour in order to accurately and rapidly perform the segmentation task. 

3.2.5 Contour initialization 

In our study, we will investigate 2 different methodologies for the contour initialization process to study their effect of on the 
segmentation accuracy. The first initialization is considering the previously extracted contour from each slice is considered 
as the starting initial contour for this slice. In addition, the final contour segmented for any time frame is considered as the 
initial contour for the next frame. In the second initialization algorithm, we propose defining initial contour for each frame 
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based on the image’s polar representation. The algorithm can be defined as follows:  

a) Each Cartesian frame is transformed into its polar coordinates representation where the center of transformation is 
calculated from the previously extracted initial contour.  

b) The gray level polar coordinates image is converted to a binary image using a threshold T value for the LV and T1 value 
for the RV; where T1 is the average value of threshold using Otsu’ method and intensity value at 80% of the area under 
probability density function curve.  

c) The objects, found in the upper first third of the binary image, are kept; as the transformation process locate the LV 
region at top third of the image (approximately the height of LV to image height). This step used only for LV. 

d) The image is then transformed back from the polar to the Cartesian coordinate, where the contour of survived object is 
considered as the initial contour of this frame as shown in Figure 3, and Figure 4. 

 

Fig 3: Initial contour extraction for LV 

                                 

Fig 4: Initial contour extraction for LV 

3.2.6 Level set method  

After obtaining the initial contour, the Distance Regularized Level Set Evolution (DRLSE) is used for the segmentation 
task. It allows the use of relatively large time steps to significantly speed up curve evolution, while ensuring adequate 
numerical accuracy [7].  

                        

Image in Cartesian           Transformed image to polar            After threshold 

                        

   After processing             Image back to Cartesian      

 

                           
Image in Cartesian           Transformed image to polar            After threshold 

                            

   After processing           Image back to Cartesian   Initial contour superimposed 

on original image 

 

Initial contour superimposed 

on original image 
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3.2.7 Evaluation metrics  

In order to evaluate the performance of segmentation, Dice metric, and Hausdorff distance were used to compare the 
segmented contour to experts segmented contour [14].  

RESULTS  

The performance of the proposed method was tested using two datasets of CMR perfusion images. The different 
registration algorithms effect on the segmentation of LV and RV is shown in Table 1 & Figure 5, and Table 2 & Figure 6 
respectively. The use of straightforward translation concept in image domain gives better result than that in the frequency 
domain using phase correlation method. The phase correlation is highly affected by image noise as it produces high peaks 
in Fourier transform images. In order to improve the results Gaussian filter was used to smooth the Fourier image. This 
process still failed to succeed in registering some frames. Though, it degrades the overall segmentation accuracy. The 
difference in accuracy due to effect of registration is about 5%, and 9% for LV and RV respectively.  

Table 3, Figure 7 and Table 4, Figure 8 show the effect of the initialization to level set method using the previously 
extracted contour and polar based initialization algorithms on the performance of the segmentation of the LV and RV 
respectively. From results, we can conclude that the initialization process affects the segmentation accuracy. Changing 
the initialization method affect the accuracy of segmentation by factor of 4% and 1% when applied for the segmentation of 
LV and RV respectively. The polar-based method improves the result through extracting initial contour for each frame 
instead of taking it from the previous frame as done in the literature.  

The average accuracy of the proposed segmentation algorithm has been improved from 0.77 to 0.82 and from 6.8 to 6.3, 
measured using Dice metric (DM) and Hausdorff (HD) similarity metrics respectively, as seen in Figure 9 shows examples 
of our segmentation results.  

 

Table 1. Effect of registration on LV segmentation using levelset method. The results obtained using first way of 
initialization as mentioned before. 

 Slice level 
DM (mean 
± SD) 

HD 

(mean ± SD) 
Sensitivity (%) Specificity (%) 

Translation in 
image domain 
(Reg.1) 

 

Base 0.89 ± 0.08 5.77 ± 3.24 84.04 99.34 

Mid 0.73 ± 0.08 9.10 ± 2.49 66.20 99.34 

Apex 0.70 ± 0.13 5.69 ± 2.25 79.38 99.77 

Translation in 
frequency 
domain 
(Reg.2) 

Base 0.84 ± 0.14 7.40 ± 5.49 85.75 97.92 

Mid 0.75 ± 0.10 8.54 ± 3.49 66.35 99.37 

Apex 0.58 ± 0.12 13.80 ± 4.18 63.59 99.46 

 

Table 2. Effect of registration on RV segmentation using levelset method. The results obtained using first way of 
initialization as mentioned before. 

 Slice level 
DM 

(mean ± SD) 

HD 

(mean ± SD) 
Sensitivity (%) Specificity (%) 

Translation in 
image domain 

Base 0.86 ± 0.06 10.24 ± 3.06 91.86 96.79 

Mid 0.77± 0.09 10.03 ± 2.86 71.59 98.97 

Translation in 
frequency 
domain 

Base 0.80 ± 0.08 11.29 ± 4.51 89.21 47.06 

Mid 0.59 ± 0.12 13.70 ± 3.84 95.99 97.35 
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Fig 5: the ROC curve defines the difference between the two registration algorithms on LV segmentation using 
level set method 

 

 

Fig 6: the ROC curve defines the difference between the two registration algorithms on RV segmentation using 
level set method 

 

Table 3. Effect of initialization on LV segmentation using levelset method. 

 Slice level 
DM (mean 
± SD) 

HD (mean 
± SD) 

Sensitivity 
(%) 

Specificity 
(%) 

Initial contour 
of current obtained 

from pervious 
frame 

Base 0.89 ± 0.08 5.77 ± 3.24 84.04 99.34 

Mid 0.73 ± 0.08 9.10 ± 2.49 66.20 99.34 

Apex 0.70 ± 0.13 5.69 ± 2.25 79.38 99.77 

Initial contour 
for each frame 
obtained using 

polar 
transformation 

Base 0.88 ± 0.10 6.79 ± 4.10 85.03 99.33 

Mid 0.81 ± 0.09 7.00 ± 2.66 73.76 99.58 

Apex 0.75 ± 0.13 5.04 ± 2.30 71.85 99.77 



I S S N  2 2 7 7 - 3 0 6 1  
V o l u m e  1 5  N u m b e r  1 1  

I n t e r n a t i o n a l  J o u r n a l  o f  C o m p u t e r s  &  T e c h n o l o g y  

7 2 2 4  |  P a g e                               c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  

A u g u s t  2 0 1 6                                               w w w . c i r w o r l d . c o m  

 

Table 4. Effect of initialization on RV segmentation using levelset method. 

 Slice level 
DM (mean 
± SD) 

HD (mean 
± SD) 

Sensitivity 
(%) 

Specificity 
(%) 

Initial contour 
of current obtained 

from pervious 
frame 

Base 0.86 ± 0.06 10.24 ± 3.60 91.86 96.79 

Mid 0.77 ± 0.09 10.03 ± 2.86 71.59 98.97 

Initial contour 
for each frame 
obtained using 

polar 
transformation 

Base 0.84 ± 0.09 12.50 ± 6.48 78.45 98.34 

Mid 0.80 ± 0.10 8.83 ± 3.78 81.42 98.64 

 

 

Fig 7: the ROC curve defines the difference between the two initialization algorithms on LV segmentation using 
level set method 

 

 

Fig 8: the ROC curve defines the difference between the two initialization algorithms on RV segmentation using 
level set method 
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                                  (a) 

   

   

                                   (b) 

 

Fig 9: Segmentation results: first and second column related to first and second algorithm of initialization 
respectively using Level set method for (a) LV, and (b) RV. (red contour represent automatic segmentation and 

green contour represent the manual 

CONCLUSION  

In this study, we have presented a modified fully automatic workflow to segment the heart ventricles using levelset method 
and to highlight the effect of the registration and contour initialization of the cardiac ventricles on the accuracy of levelset 
segmentation. Short axis view of the cardiac perfusion MRI datasets was used. The proposed method consists of six main 
steps: denoising step, localization step, initial contour extraction, followed by registration, segmentation, and finally, the 
evaluation and validation of results. The segmentation accuracy has been improved, using registration in image domain 
algorithm, by 5%, and 9% for LV and RV segmentation respectively. Furthermore, the system introduces a new step to 
extract a real shape of the LV for each slice instead of assuming it circle or ellipse. A new initialization for the levelset 
method based on polar representation of the images is presented that improves the accuracy of segmentation results from 
0.77 to 0.82, measured using Dice metric. In future, improving the accuracy of results by investigating more sophisticated 
methods for both the registration and segmentation steps is suggested. As our initial contour step allow us to train any 
algorithm automatically, and effectively, so we can use Active shape models (ASM) to improve the segmentation 
accuracy. In addition, generalizing the algorithm to work for any type of cardiac MRI Data. 
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