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ABSTRACT 

This paper is intended to be a follow up of the work done by the authors in previous articles. On one hand it is concluded 
with a theorem that proves to be a definite answer to one very important research direction and on the other hand it is an 
opening of new research directions in the field of  loop structures automatic parallelization. 
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Introduction 

In some previous articles ([1] [2] [3] [4]) we have presented and analyzed the most important transformations of source 
code present at the level of loop structures in restructuring compilers. We pointed out the idea that the problem of 
choosing an optimal sequence of transformations that leads to the most efficient parallel version remains an open 
question. Current compilers manage to incorporate only a set of heuristic decisions. 

On the other hand, before trying to generate an optimal sequence of looping transformations, it seems natural for us to ask 
if in general, a program always supports an optimal planning scheme for execution. 

The answer to this question is negative and we have reached this result due to the original contribution of this paper. In 
this paper we demonstrate that an optimal scheduling scheme cannot be built in the case of a general program (even 
when dealing with enough but finite resources), thus solving the open question formulated in [6]. 

Optimal parallelization problem 

Restructuring compilers exploit the inherent parallelism from sequential programs, having as final purpose the efficient 
execution through the construction of an optimal planning scheme. In this perspective, the algorithms presented in our 
previous work are particular techniques for obtaining optimal scheduling scheme for the execution of looping structures. 

From the theoretical point of view, a question naturally appears: having an arbitrary loop structure and an architecture 
model that assumes sufficient but finite resources, is it always possible to construct an optimal scheduling scheme? 

In this section we define the notion of optimality of a planning execution scheme and we show that in general such 
scheme cannot be built, showing that there are looping structures requiring infinite resources in order to support optimal 
planning schemes[5].  

Preliminaries 
Restructuring compilers aim at efficient exploitation of parallelism available at the level of a program. Parallelization of fine 
granularity (i.e. at the level of instruction, also called compacting) exploits irregular parallelism at the level of a loop 
through concurrent execution of operations belonging to the same iteration. Coarser methods (such as doacross [7]) allow 
extracting a higher degree of parallelism by executing concurrently additional instructions or operations belonging to 
different iterations. 

A lot of attention was given to the parallelization of doacross loops ([8],[9]). A doacross loop type expresses a certain 
degree of competition, although preventing a loop’s iterations to run in parallel. To obtain an optimal execution of 
programs that do not contain control structures, a polynomial algorithm called linear planning is used (scheduling list), 
which does not require resource constraints. Planning for execution that requires taking into consideration such 
restrictions is known to be an NP-complete problem [10]. Assuming the existence of sufficient resources, the only 
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conditioning that will dictate parallel execution planning of the instructions or operations, remains the one which refers to 
existing data dependencies at the level of the program code. Planning for parallel execution presumes, in most cases, 
applying transformations to highlight precisely such possibilities. Obviously they must ensure semantic equivalence 
between the original and the transformed code. Therefore, we define the notion of equivalent transformation of a program 
code with the purpose of automated parallelization. 

Definition 1. Two sequences of source code are called semantically equivalent if one can be obtained from the other by 

applying a sequence of transformations which preserve the original data dependencies. A detailed analysis of these 
changes has been made in previous papers. 

Aiken and Nicolau in [6] studied the optimal parallelization of looping structures, building a greedy planning algorithm that 
detects a so called loop cliché (loop pattern).However their algorithm requires a severe restriction, namely the lack of 
conditional instructions. 

The paper concludes with the following statement: "remains an open question whether the optimality results of our work 
can be extended for looping structures with arbitrary control flow". 

We are going to show through an analysis of a simple counter example, that in general (understood as the possibility of 
using inside a loop any instructions that affect flow control), optimal planning for a source code semantically equivalent to 
a loop is impossible to be obtained. 

Most studies and analysis on optimality planning suppose that an architectural model has sufficient but finite resources, 
meaning that the architecture can run any program (i.e. resources are sufficient) whose required resources are limited by 
an arbitrary large enough integer (i.e. resources are finite however). 

In the following, we note with R the number of available resources. In order to simplify the analysis, we assume without 
loss of generality that any execution of an elementary operation requires one clock cycle. 

Intuitively, by the optimal parallelization of a program we understand getting the semantic equivalent form of a program for 
which we achieve at every t moment, the planning in parallel of all independent operations available for execution. 
Such program is also called the optimal program. Therefore, parallelization is optimal if we get through transformations an 

optimal program. 

In the following, we define equivalently the concept of optimal program in three more ways. 

Definition 2. A program P is called optimal if one of the followings is true: 

a). for each operation w of P, executed at time t, there is a dependence chain with length t that ends at w; 

b). for each execution E of P, E is carried out in the shortest time, relative to data dependencies of P; 

c). the length of any execution E (interpreted as a way of executing in the data dependencies graph of P) is the length of 
the longest chain of dependencies of P. 

Speculative execution method 

The appearance of conditional instructions within a loop makes the static planning by compilation to become insufficient 
for a balanced load of processors. This is due to the large differences that may exist between the execution times of the 
branches of the decision structure. 

In most cases, these tests cannot be evaluated at compile time. Thus, the scheduler does not have the needed 
information to decide the appropriate computational load for obtaining reasonable efficiency. 

That is why, in programs involving massive presence of decision structures, optimality cannot be achieved without the 
application of so-called speculative executions. This involves execution in advance of any action that becomes available 
for execution according to the dependency restrictions. 

In this sense the definition of optimality for executing a program is respected, independently of the decision branch on 
which the instruction is, so independently of the result of the evaluation after the test condition. 

Such an approach ensures that no processor will remain without computational load  (only if the data dependencies 
require it) due to the lack of planning. 

Moreover, after the condition evaluation, the desired results are already available, thus contributing significantly to the 
increase of execution speed.  

Obviously, this can be applied in practice only if the resources are enough to take the speculative execution over. In order 
to solve the general problem of planning, resource limitation itself is not considered a problem, because at least in theory, 
we can always extend the architecture with new resources (processors, memory) that at the current time have acceptable 
cost. We define speculative execution as follows: 

Definition 3. Let S be an instruction control dependent on a T test at the source program level. While executing the 

program, the statement S is speculatively executed if it will be scheduled before or concurrently with the test evaluation T. 

This will mean that, in order to improve global execution, the system will certainly have to perform unnecessary 
calculations (the results of which will dispense immediately after the test). There will be variations where S is executed, but 
its result will not contribute in any way to the final result of program execution. 
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We illustrate the benefits that speculative execution can bring in the body of a cycle that contains conditional statements. 
Let the following code be given: 

 for i := 1 to N do 

 begin 

  if (x > y) then 

   begin 

S1:    z := f(x); 

S2:    x := g(z); 

   end 

       else  

S3:     x := h(x); 

S4:  y := E(x); 

 end; 

 

Fig 1. Sequential looping 

It is to be remembered that we assumed for simplicity that the execution of any elementary instruction requires one clock 
cycle. The sequential execution of these N iterations requires between 3N (if all iterations are conducted on the false 
branch) and 4N (if all iterations are conducted on the true branch) clock cycles. 

Applying speculative execution will require just 2 N + 3 clock cycles, which is evident from Figure 2, where we reduced the 
4 steps of a sequential iteration into a compact iteration consisting of two steps. 

Thus, for large values of N speculative execution method will reduce the execution time of a sequence to half. 

In figure 2, planned operations in a single clock cycle are executed in parallel. 

 

Moment 

Scheduled operations 

True branch  False branch  

1              test(x>y);         z:=f(x);                   xF := h(x); 

2 xT := g(z) y := E(xF) 

3 y := E(xT); z:=f(xT)   

4, 6, ..., 2k xT := g(z) test(x>y)       xF := h(xF)  

5, 7, ..., 2k+1 y := E(xT);   z := f(xT) 

The content of iterations on 
True branch 

y := E(xF); 

The content of iterations on 
False branch 

z := f(xF)   

      

 

Fig 2.  Optimal planning based on the speculative execution of the cycle from Fig. 1. 

Bold lines define what we might call the body model execution cycle in which one iteration requires two clock cycles. 

Note that through speculative execution z := f(xF) false branch is calculated in advance (even if you decide not to follow 
the next iteration true branch, a situation which will result in not needing z).  

Together with the test evaluation, xT := g(z) is calculated in advance. If the test is evaluated to false, we note however, that 

we will not need all of these values. The optimality is obtained by adding additional cost relative to the resources. 

In conclusion, remember that the degree of possible parallelism to be exploited at the level of a program is limited under 
ideal conditions only by data dependencies, which is the so-called inherent parallelism. 

As we have shown we can adopt a model free of hard restrictions because anytime we can expand technical capabilities 
of the architecture work. Therefore, most architectural models assume finite but enough resources. 

Optimality execution loops that contain conditional statements. 
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We approached the issue of speculative execution to highlight that without the application of such techniques cannot be 
respected the definition of an optimal execution. Even under these conditions, we further show that there are situations 
where optimal planning cannot be done. 

This is due to conditional instructions which are part of a loop body, where one of the branches may hinder speculative 
execution of activities belonging to other branches.  

Being forced to respect the definition of optimal execution, we get at a certain time t the necessity for parallel execution of 

more instructions than the R resources allow. This result leads us to the conclusion that an optimal execution scheme 
cannot be constructed for the general case of a loop structure. 

Intuitively, we note that conditional instructions combined with the restrictions imposed by data dependencies prevent a 
balanced load of processors in parallel activities to be planned according to the method of speculative execution and 
which must respect the definition of optimality. 

So, we conclude that the R finite resources are insufficient in the general case, for building optimal planning schemes. 
This, in the sense that no matter how big we choose the value of R, we can find a program whose optimal execution 
requires more than R resources. 

This happens because the number of resources required is a function of the time parameter t, which is always an 
unlimited value, even assuming that any program running on our model of the machine will end its execution. 

We now address the intuitively noticed formal aspects above and we will discuss them at the level of an adequate 
example. 

Theorem. The problem of building an optimal planning scheme for a loop structure is irresolvable in the general 
case. 

Demonstration. Notice that it is enough to find a looping structure and a particular execution for which an optimal planning 
scheme cannot be constructed for the theorem to be proved. Remember that we assumed that every step of 
implementation requires exactly one clock cycle and the definition of optimal scheduling scheme requires that any 
operation to be executed immediately after its data input becomes available, without any restriction of access to 
resources. 

Let the following example program be given: 

 i := 0 ; z := c;  

 for i := 1 to N do 

 begin 

  if (z > y) then 

S1:    z := fi(x) 

      else  

S2:     x := h(x); 

S3:  y := E(x,z); 

 end; 

Fig 3. Looping structure and a particular execution 

where the existing dependencies are S2 → S2 (auto-dependency carried by iterations), S2 → S1, S2 → S3, S1 → S3, S3 → 
T and S1 → T , where T is the test condition. 

We shall refer to a particular execution, namely that for which the condition evaluates to false for the first n1 iterations and 
true for the rest n2 iterations, with n2 ≤ n1, so N = n1 + n2.  

Taking into account the existence of dependencies and considering that the R resources of our machine model do not add 
any restriction of execution, any optimal scheduling scheme will require n1 + 3 clock cycles. 

This is evident if we look at Figure 3, in which we illustrated optimal planning of operations in every step of execution 
(clock loop). 

It is easy to see the execution cliché for the first n1 iterations:  

for each p, 2 ≤ p ≤ n1, iteration p execute instruction xp := h(xp-1) at the moment p and instruction yp := E(xp,z) together with 
test (z > yp-1) at the moment p+1. 

Let us note that in the meantime that we cannot speculatively execute any instruction from the true branch. In fact, this is 
precisely the main characteristic of the type of conditional sequence that does not support optimal planning scheme, 
because the first execution of S1 must wait the final value of x provided by the auto dependent S2 instruction after 
execution of n1 iterations of the false branch. 

This value will not change further because the next n2 iterations will go to True branch.  
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So, we now have available all the functions fi and the value of x enabling simultaneous execution of all assignments to z. 

To make this possible, i.e. to ensure consistency, it is necessary to not allow simultaneous access to the z variable. 

It is applied here the scalar expansion technique [Bacon94] which preserves each z in a separate memory (remember that 
R represents sufficient resources). 

So, for an optimal execution, we must have at the moment n1+1, n2+2 operations: that n2 assignments for z values 
together with the evaluation of last test of first n1 iterations (z > yn1-1) and assignment yn1 := E(xn1,z).  

Once we have available the n2 values of z, same reason will require to compute all values y of S3 at the next moment.  

We can do this by applying again the scalar expansion, for y values and knowing that we have enough resources. 

So, at the moment n1 + 2 we must do n2+1 operations: the n2 assignments of y and the evaluation of (z > yn1).  

After that, the only remaining operations are those n2 tests (zp > yn1+p), which all can be evaluated at the moment n1+3, 

due to the fact that the compared values are all available.  

Our analysis concludes that any scheme for the optimal execution of the program code above will require n1 + 3 clock 
cycles. Also, we need: 

n2 + 2 resources at moment n1 + 1 

n2 + 1 resources at moment n1 + 2 

n2       resources at moment n1 + 3 

Moment Scheduled operations 

1 z > y0  x1 := h(x0) 

2  y1 := E(x1, z) x2 := h(x1) 

3 z > y1 y2 := E(x2, z) x3 := h(x2) 

4 z > y2 y3 := E(x3, z) x4 := h(x3) 

. . . . . .  . . . . . .  

n2 . . .  . . . . . .  

. . .  . . .  . . . . . .  

N1 - 1 z > yn1-3 yn1-2 := E(xn1-2, z) xn1-1 := h(xn1-2) 

n1 z > yn1-2 yn1-1 := E(xn1-1, z) xn1 := h(xn1-1);  iteraţia i= n1 

N1 + 1 z > yn1-1 yn1 := E(xn1, z) z1:=f1(xn1), z2:=f2(xn1),..., 

 zn2:= fn2(xn1) N1 + 2 z > yn1                yn1+1 := E(xn1, z1) ...      ...     yn1+n2 := E(xn1, zn2) 
N1 + 3 z > yn1+1 z2 > yn1+2  . . .      ...     zn2 > yn1+n2   

 

Fig 4.  Optimal planning scheme for the above cycle. 

The problem in this case is that the number of resources required at a time t is a function of t (Resources (n1+1) = 
n2+2 = N-n1+2).  

In the case we have N >> R with n1, n2 >> R also, this means that even in the situation of finite and sufficient resources 

that we considered for our architectural model (which is still the largest working hypothesis we can accept for practical 
reasons) in general case we have not sufficient resources to plan in an optimal manner the necessary operations. 

So, the problem of building a planning scheme for the optimal execution of a loop structure is unsolvable for the example 
above. 

We conclude, therefore, that in the general case we cannot guarantee, for a given program, obtaining the optimal planning 
scheme of execution, considering finite resources. 

Conclusions 

This article represents an original contribution. We showed that for a loop structure, which contains conditional 
instructions, an optimal planning scheme cannot be constructed. Thus we consider that the open question formulated by 
[Aiken88] is solved.  

We characterized informally a given type of conditional loop, in this way demonstrating the inexistence of an optimal 
scheme for the general case. As a further development we intend to analyse and formulate the conditions that a loop 
structure needs to fulfil in order to admit the optimal planning scheme, as an absolutely innovative research direction. 
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