ISSN: 2277-3061 (online)

International Journal of Computers & Technology
Volume 2 No. 3, June, 2012

A Study Paper on Performance Degradation due to Excessive
Garbage Collection in Java Based Applications using Profiler
Emi Retna. J

Abstract

Applications are becoming more complex, more larger and
demand high quality. Application Server is the component on
which most of the applications are hosted. It acts in the middle
tier providing lot of functionalities like transaction
management, caching ,persistence clustering etc. There are a
variety of application servers to choose from like JBoss,
Websphere, Tomcat etc, some are open source while others
are proprietary. Quality parameters like performance,
availability, scalability, maintainability, re-usability vary
between different application servers. The application servers
can be analyzed and monitored for performance using various
tools and metrics. The quality parameters of an application
server are affected by various factors such as memory leak,
poor performing code, etc. It is necessary to evaluate the
performance, to verify if the quality requirements are met.
Software Engineering has several methodologies, metrics and
calculations to evaluate the quality requirements. [1] discusses
the various measurements and metrics that can be used to
calculate the quality parameters.

Key Words - garbage collection, profiling, generation,
calibration

Lot of factors affects the performance of a Java application.
Factors that directly affect the performance of a Java
application are heap size, threads and connection pooling. If
more heap size is allocated then more java objects can be
stored in the heap space. So the garbage collection can take
place sparingly or the application can utilize more CPU cycles
on performing the functionality rather than garbage collecting.
But when garbage collection takes place, more objects needs
to be searched for collecting the garbage object. On the other
hand if less heap space is allocated the application does
garbage collection very often. In this paper we discuss on the
memory usage monitoring and garbage collection in Java
based applications. Excessive garbage collection affects the
performance of a Java based application though there are
tunable parameters in JVM to perform garbage collection. The
tool used for memory usage analysis is the Netbeans IDE
profiler. The result shows that for high scaling applications
improper garbage collection and memory leak can be a
serious bottleneck that needs to be addressed.

This project is a motivation of a research work on
performance study in Java based applications. This paper
Results

proposes an analysis on memory that may cause poor
performance in an application. Problems like memory leak
slow down the processing of jobs [2]. The memory leak needs
to be identified at the early stage of deployment and remedial
actions taken to fine tune the code so as to avoid memory
leaks.

Experiments - Identifying Memory Leaks

There are several tools to analyze memory and monitor
memory usage. The Netbeans IDE profiler is one among them
that records the behavioral aspects of the application. The
profiler is a tool that has been inbuilt with the latest version of
Netbeans IDE. It helps in analyzing the memory, the heap size
etc. The process involved in performing the profiling is out of
the scope of this paper.

These experiments were conducted in uniprocessor system.
The Java platform used was jdk1.6 in Windows operating
environment.

Several case studies were performed and access the memory
utilization and how they affect the overall performance of an
application server. The results are discussed below.

Case Study 1 and Evaluation Results

The NetBaeans profiler was used to evaluate some of the Java
applications developed. The Java application developed was
deployed in NetBeans IDE and the JBOSS Application Server
was started. Inorder to run the NetBeands profiler the
following steps were followed;

1. Run the profiler calibration. Calibration is done on
the JDK running on the machine.This is a one time
action.

Integrate the profiler with the project

Analyze the results of memory profiling

The entire application can be profiled or parts of
application alone can be profiled. Further there is
option of profiling all Java classes or only project
classes. There is option of filtering out Java core
classes alone. User defined profiling points alone
can also be taken up for analysis.

wmn

The experiment was conducted to profile the entire
application as well as only core java classes of the application.

200

| 112923408 AM, Nov 10, 2010
Surviving Leserabons: 0
Relative Tine Spent in GO 0.0 %

-~ SaM Surviving Generations: 20
Max Relative Time Sgent in G 1.5 %

o

oM

1530 AM 132 A 1120 M

Heup S I Lued Mg

Srviving Genwrdoon B Rddive T Spent 0 G

M = T T
132 M 1130 15132 aM

Theeack W Loaded Cutm

Fig 1: Memory profiling result of entire application

Inference:

125|Page

www.ijctonline.com

ISSN: 2277-3061 (online)

o,

«» The red shade indicates the allocated size of the
JVM heap size (left graph).

<+ The purple shade indicates the amount of JVM heap
size actually in use (left graph).

«» The red shade indicates the count of active threads
in the JVM (right graph).

«+ The purple shade indicates the classes loaded in the
JVM (right graph).

< The red shade indicates the surviving JVM objects
that has not been garbage collected over time. As
the object survives different garbage collections that
occur, the age of the object increases. The age of the
object is the number of garbage collection that the
object has survived(centre graph)..

< The purple shade indicates the percentage of

execution time spent by JVM doing garbage

collection (centre graph). This percentage of

International Journal of Computers & Technology
Volume 2 No. 3, June, 2012

execution time the JVM does not execute the
application. If this percentage is more then the
garbage collection parameters needs to be tuned in
JVM.

«+ Count of generation = age of objectl + age of object
2 +....+age of object n

In the experiment:

< The allocated JVM heap size is above 300
megabytes (left graph).

« The JVM heap size actually in use varies from
above 100 megabytes to 200 megabytes (left graph).

There is a provisioning to run the garbage collection forcibly.
When the garbage collection was forcibly done, the results
obtained are as shown in the below figure:

M

1132 a0

e Soe B Lxad Fhap

B Suviing Genw sticon I Rdative Tine Spant 0 G0

T
1E24M 1M

O Thrasct: B Lasded Claces

Fig 2: Memory profiling — forced garbage collection

The basic telemetry information of the project as given by the
tool is as given below:

Instrumented: 64,261 Methods
Filter: Prafile all classes
Threads: g9

Total Memory: 426,246,144 B
Used Memory: 171,576,944 B
Time Spent in GC: 0.1%

Fig 3: Basic telemetry information — entire application

While the experiment is being conducted if there is a need to
convert profiling to only project classes that can also be done.
This need may arise due to the factors that too much data
collected and the profiler ran out of memory.
OutOfMemoryError may occur due to several reasons
including HttpUnit doesn’t support Java Script processing.

Ve

Now the basic profiler information is as given below:

126 |Page

1352 AN

W) Hew

1S RN

T
115 AN

154 12
B Sureninng Gararesors B Kalive Tive Soed i GO B Thoeodt B Loated Sluses

Fig 4: Memory profiling result of only project classes
Instrumented: 21 Methods
Filter: Profile only project classes
Threads: a2
Total Memory: 447,021,056 B
Used Memory: 212,584,712 B
Time Spent in GC: 1.0%

www.ijctonline.com

ISSN: 2277-3061 (online)

Fig 5: Basic telemetry information — only project classes

When some major operation was performed the below data
was obtained:

International Journal of Computers & Technology
Volume 2 No. 3, June, 2012

Fig 6: Basic telemetry information — only project classes

Both object creation and garbage collection can be recorded
and analyzed. The thread data can be viewed available is :

=| Basic Telemetry

Instrumented: 26 Methods

Filter: Profile only project classes
Threads: a2

Total Memory: 452,657,152 B

Used Memory: 173,958,976 6

Time Spent in GC: 0.2%

Treesd Running « Sheasing wak Moron Toral
Lt Lerew S4G.828 o0 oo 00
Signal Depatcher 045,602 G0 0o 00
Dastroy Jave'd TG 08 .0 o0 oo
Woss Systers Threass! 1) ", 00 0.0 0o 00
SV TGP Acoept- 105 045,008 0.0 [} on
Bows Spvtam Themade(1)-2 o, B8 0.0 1] o0
BNV TCP Accept- 1000 &« < 0.0 00 0.0
B TP Accept 0 S:45. 028 0.0 00 0o
socondy yServer Sochet Theesd(0] S5, 808 0.0 [2] 0o
AccepronTreesd Server Sodet] s =, S5 B8 0.0 0o 00
Acepros Trresd Server Socket] a0 =, 145,008 o0 [] oo
coephor Traead] Secver Sockat] addr e, .08 0 [1E] 00
Ustarey 14713 e 0.0 on 00
Ustarer 14717 ", 0 0.0 09 0o
ENL ICP Aoonpt 4444 L LN on on 0o
Sodedionvoher fcoaptor 804445 “aas 0 [B 0o
A 1270001 S00- Acceplor-U S5 008 0.0 LA v
Mip 1270015080 Acceptor O . .0 0o 00
FMLTCR Comnection{38)-127.0.001 25m 0.0 118,265 0o
oG 14423 a0 231408 00
1259 0.0 1:00.047 0o
0.3% 0 H4G5.438 0o
021 GALS5I5 on ng
Def e Quartzichadber _Workar-3 [] 0.0 =000 on
Dol e Quartrichadber Workar-1 0.3 0.0 .08 0310
Oof et CQuartrichaddar worber-% 02 a0 a8 008 oo
Ol QuarteSchadde Wirher 7 0,220 0.0 L. 0.310

Timestamp Heap Size (Bytes) |Used Heap (Bytes)
Nov 10, 2010 11:20:24 AM 128647168 5897920
Nov 10, 2010 11:20:25 AM 128647168 8608272
Nov 10, 2010 11:20:27 AM 128647168 12663608
Nov 10, 2010 11:20:28 AM 128647168 25523112
Nov 10, 2010 11:20:29 AM 128647168 30235744
Nov 10, 2010 11:20:30 AM 128647168 9832240
Nov 10, 2010 11:28:29 AM 356909056 214367632
Nov 10, 2010 11:28:30 AM 356909056 214367632

CaseStudy 2 and Evaluation Results

The same experiment was repeated for several projects. Another result of a sample application is as given below:

127 |Page

www.ijctonline.com

ISSN: 2277-3061 (online) International Journal of Computers & Technology
Volume 2 No. 3, June, 2012

= o
L4030 11404019 14030 I 140404 1405094 13 e L4040 M 19050 e

Wb Son W Led Meg B Surweng Gerw dions I Adies T Spect o oC W Theasti B Lasded Clazac
Fig 7: Memory profiling result of entire application

Instrumented: 27,168 Methods
Filter: Praofile all classes
Threads: &

Total Memaory: 165,740,544 B
Used Memory: 75,176,368 B
Time Spent in GC: 0.5%

Fig 8: Basic telemetry information — entire application

CaseStudy 3 and Evaluation Results

I=10.000

T T =~ ™ T
e 1467 144 14670

W S W oed e ¥ Srewing Cerwrviore M Bekerss Trse Spand m OC W Theasd: W Losded Chener

Fig 9: Memory profiling result of entire application

[=] Basic Telemetry

Instrumented: 57,591 Methods
Filter: Profile all classes
Threads: 59

Total Memory: 281,739,264 B
Used Memory: 165,139,003 B
Time Spent in GC: 0.3%:

Fig 10: Basic telemetry information — entire application

Modifying the profiler to profile only project classes the following results were obtained

128 |Page www.ijctonline.com

ISSN: 2277-3061 (online) International Journal of Computers & Technology
Volume 2 No. 3, June, 2012

/

AR

T T » T T
Zirasem arom urasme AN

B e Soe W Uked g B Survinng Gerwatore B Kaliios T Spacd 0 GO W Thesak B Losded Class

Fig 11: Memory profiling result of only project classes

Instrumented: 2,030 Methods

Filter: Profile only project classes
Threads: 71

Total Memory: 298,254,336 B

Used Memory: 195,756,285 6

Time Spent in GC: 2.9%

Fig 12: Basic telemetry information — project classes only

b 10w

b7,

T T T
slam 209 2.8 Z19me

U an Soe B Ged e W S aning Ganwdion: I Rellas Tive Sowe n &C B Mresats B Losded Chinies

Fig 13: Memory profiling result of only project classes

Instrumented: 2,184 Methods

Filter: Profile only project classes
Threads: B2

Total Memory: 274,530,304 B

Used Memory: 207,814,792 B

Time Spent in GC: 0.3%:

Fig 14: Basic telemetry information — project classes only

On forcibly running GC the values obtained are as follows:

110
r——— e 100X
< B 2
-5, 0
T 1] % T .
2:2mM 24 2mm M
W e Son W ined b W S wn i Gerw ki B Rty Tove Spw 0 50 W Theven B Lasdnd Clane

Fig 15: Memory profiling — forced garbage collection

129 |Page www.ijctonline.com

ISSN: 2277-3061 (online)

[*] Basic Telemetry

Instrumented:
Filter:

Threads:

Total Memory:
Used Memory:
Time Spent in GC:

International Journal of Computers & Technology
Volume 2 No. 3, June, 2012

2,134 Methods

Prafile only projeck classes
&1}

358,809,600 B
150,335,512 B

0.4%

Fig 14: Basic telemetry information — project classes only on forced GC

Inference: When the GC is forcibly run the used memory is
getting reduced. Reducing garbage collection times increase
the performance. Garbage collection (GC) delays can be
successfully lowered to by using parallel garbage collection
algorithms. But most of the application do have modules
which executes sequentially and does not do parallel
processing.

Even if the JVM spends 1% of time in garbage collection in a
uniprocessor system, it translates to more than a 20% loss in
throughput on 32 processor systems [3]. Hence this is a major
problem that needs to be addressed. Improvements in garbage
collection process or avoiding memory leaks to a smaller
extend can show better performance results. Garbage
collection may become a principle bottleneck for large scale
applications.

Acknowledgement

The author expresses deep gratitude to Karunya University for
providing infrastructure for carrying out the research work.
The author thanks the senior professors and the anonymous
reviewers for roviding valuable suggestions to improve the
quality of the research paper.

130|Page

References

[1] J.Emi Retna, Greeshma Varghese, Merlin Soosaiya, Sumy
Joseph, “A Study on Quality Parameters of Software and the
Metrics for Evaluation™ International journal of Computer
Engineering & Technology (WCET),ISSN Print : ISSN 0976
— 6367 ISSN Online: ISSN 0976 — 6375 Volume 1, Issue
1(2010)

[2] Aad P. A. van Moorsel, Katinka Wolter, “ Analysis of
Restart Mechanisms in Software Systems” IEEE
Transactions on Software Engineering Vol 32, No.8, August
2006

[3]http://www.oracle.com/technetwork/java/gc-tuning-5-
138395.html

www.ijctonline.com

