
ISSN: 2277–3061 (online) International Journal of Computers & Technology
 Volume 2 No. 3, June, 2012

102 | P a g e w w w . i j c t o n l i n e . c o m

 Overcoming the limitations of PDB format

Shifali Mehta

University College of Engineering

Punjabi University, Patiala

mehta.shifali@yahoo.co.in

Amardeep Singh

Professor

University College of Engineering

 Punjabi University, Patiala

Amardeepdhiman@gmail.com

ABSTRACT

The Protein Data Bank is a repository for the 3-D structural
data of large biological molecules, such as proteins and

nucleic acid. The PDB is a key resource in the areas of
structural biology, structural genomics. Most major scientific
journals, and some funding agencies, such as the NIH in the
USA, now require scientists to submit their structure data to
the PDB. If the contents of the PDB are thought of as primary
data, there are hundreds of derived databases that categorize
the data differently. For example, both SCOP and CATH
categorize structure according to type of structure and
assumed evolutionary relations; GO categorize structures

based on genes. In this paper, we will describe how to
overcome the limitations of PDB format.

Keywords: PDB, XML, XCML.

INTRODUCTION:

Protein Data Bank

The Protein Data Bank was established at Brookhaven
National Laboratories in 1971 as an archive for biological

macromolecular crystal structures. In the beginning the
archive held seven structures, and with each year a handful
more were deposited. In the 1980’s the number of deposited
structures began to increase dramatically. This was due to the
improved technology for all aspects of the crystallographic
process, the addition of structures determined by the nuclear
magnetic resonance (NMR) methods, and changes in the
community views about data sharing.

PDB Data Curation

It is well known that the human genome project has resulted
in rapidly growing databases in bioinformatics. And
bioinformatics provide some opportunities to develop novel
data analysis method, but there are still some challenges

including protein structure prediction, genomic sequence
analysis, etc. For example in protein structure prediction,
scientists are using PDB file to apply amino acid sequence to
determine the secondary and tertiary structure of proteins.

Unfortunately, PDB supports several different formats, thus it
suffers from inconsistencies in how the data formats are
constructed over time. PDB format is old, ambiguous and
inadequate, but it is still the most widely used format since all
relevant software can read it. Although some users claim they

do not mind the errors of PDB file, which may result in the
partial or wrong information to affect the accuracy of derived
and propagated data. Thus it is very necessary to develop a
system to curate data in PDB file, to provide easy
understanding and better services for protein scientists and
computer scientists.

There are two architectures for PDB data curation : one
simply uses checking filter and curation engine to curate data.
The other one uses the first one by adding XCML curation
part to further curate data, which can deeply clean the PDB
data by using more constraints. These two tools can be used
not only for cleaning existing PDB files and also for creating
new PDB files.

 Figure1. PDB Data curation system architecture

The above picture shows the architecture for PDB data
curation system. From user interface, checking filter gets PDB

file, which checks the error and reports them to curation
engine, and then curated data by curation engine are sent to
database storage. The users can get better PDB file from our
database after this process.

Most errors are fixed in original PDB file after it is through
this PDB data curation system. But however, still some issues
related to interoperability with the latest technology are still
left, which may again can create errors.

Architecture of PDB Data Curation System

with XCML

The Extensible Markup language (XML) is self describing,
and is standardized by the World Wide Web Consortium
(W3C). It is human and machine readable, flexible, extensible
and has already became the standard format for exchanging
the information through the network. It usually uses the XML
schema or document type definition (DTD) to define syntax
and data types. But it can not verify semantic constraints,
avoid erroneous data and is domain dependent. Therefore we
will not get any better data if we just convert PDB file into

XML format. In order to avoid disadvantages of XML and
make use of XML’s metrics to get better data, we apply an
XML constraint language, extensible constraint markup
language (XCML), which is more powerful.

The following architecture shows how to improve our PDB
data curation system by using XCML. Firstly PDB file is
submitted to PDB data curation system, after curation, PDB
file can be converted into XCML format by converter XML,

which uses some constraints to further curate. PDB-XML can
be in protein-OODB format after it is handled by converter
PDB and converter OODB. At this moment users can get
better data that are in domain specific objet-oriented format.

ISSN: 2277–3061 (online) International Journal of Computers & Technology
 Volume 2 No. 3, June, 2012

103 | P a g e w w w . i j c t o n l i n e . c o m

Figure2. Below diagram shows the architecture of PDB

Data curation system.

Major issues of PDB data

Data Identification: PDB users usually want to know

who generates the data, which paper, which lab, which date so

that users can identify the confidence of PDB data. In PDB
data generation, but some users may change the spelling
without any intention, such as changing AUTHOR to
AUTHRO, TITLE to ITTLE. Therefore our system is
designed to automatically check those errors and provide
users the authority to change them. In addition, our data
curation system also gives information about missing data
such as no HEADER, no AUTHOR, and no DATE and so on.

Since header of PDB file is very important that contains
information’s about the original literature citation, full names
of ligands etc, it is very necessary to include it in PDB file.
Author, paper and lab give us information about respects of
different data resources which can confirm the confidence of
data. Also date in PDB file headers show the time that the
atomic coordinates were deposited, modified and published at
the protein data bank, which helps keep data up-to-date.

Therefore identifying these data will give users and helpful
information.

Data Errors: Data Errors are generated when users

change the data. The size of PDB file is very huge such that
the users who are using them may remove or change some
data without any intention. We store the original data and

changed parts of PDB file in our storage to avoid this kind of
errors. If users have changed data, the system sends alert
signal which can avoid users to change data without any
attention. But if users really want to change data, our system
compares the current file and previous file to avoid the users
to make mistake. The system will suggest users to use the
previous data file if it finds the errors from new data file.

Redundant Data: PDB data may be redundant which

wastes storage and user’s time, therefore our system provides
filter to automatically or manually check data redundancy.
The system can remove redundant data without any loss of
accuracy of data to make sure that data file does not have
repeatable data by using following method- the system firstly

checks REMARK part of PDB file and sees whether there is
redundant data, if it has the system will compare protein
sequence and atomic structure to get rid of duplicated part in
protein sequence by applying structures matching method.

Ambiguous Data: PDB data may have same name for

different objects. It can be fixed by defining those ambiguous
side chain atoms in a hash table which lists all different them
when they appear in protein structures. In addition, the are
difficult to check. But we can check them by saving all
corresponding objects for each name in a table. We manually
check them according to the protein structures, if they are not
the same object, we will give them the different names.

Problem with Protein data bank

With the passage of time, numerous research initiatives are
coming to a level of maturity, in which the biological data size

have become exponentially big as well as leading to data
inconsistency problems like Formatting, Ambiguous data,
Data identification, Data Errors, Redundant data,
interoperability of the legacy biological data with the current
technologies. Therefore there is an urgent need to overcome
these issues. So we need to develop a framework which can to
bridge the connectivity of these old legacy database
technologies with new contemporary technologies like DB4o.

Since, the PDB file needs a special text processing functions
for its extraction of information for usage in bioinformatics
applications, there is a need to reduce the need for more text
processing and have a simple framework in which the queries
are simple to process and data can be represented as objects
for its maximum maintainability.

The text processing required to process the PDB file takes
extra efforts and resources, For example in certain area the

coordinate calues get merged with each other and it is very
difficult to process and get separate coordinate values based
on white space and delimiters. So we need to overcome these
typical issues and move ahead with contemporary technology
integration.

Also it is not clear whether the residue name is 2, 3 or 5 digit
or alphabet, they also get merge. It is also difficult to process
and get separate value of residue as it gets merged with the
next column value.

DB4o

DB4o is an embeddable open source object database for
JAVA and .NET developers. DB4o is written in JAVA and
.NET and provide the respective API’s. DB4o can run on any
operating system that supports JAVA and .NET.

DB4o represents an object-oriented data base model. One of
its main goal is to provide an easy and native interface to
persistence for object-oriented languages. Development with
DB4o database does not require a separate data model
creation; the applications class model defines the structure of
the data in DB4o database. DB4o attempts to avoid the
object/relational impedance mismatch by elimination the
relational layer from a software project.

Features of DB4o database

One-line-of-code database

DB4o contains a function to store any object with a single
command:

ObjectContainer.Store(NEW SomeClass());

Embeddable

DB4o is designed to be embedded in clients or other software

components completely invisible to end-user. Thus DB4o
needs no separate installation mechanism, but comes as just
one easily deployable library with a very low footprint of
~670 kb in .NET version and around 1MB in java version.

Client-Server mode

Client/Server version allows DB4o to communicate between

client and sever-side applications. DB4o uses TCP/IP for
client-server communication and allows configuring port
number. Communication is implemented through messaging.

Dynamic Schema Evolution

ISSN: 2277–3061 (online) International Journal of Computers & Technology
 Volume 2 No. 3, June, 2012

104 | P a g e w w w . i j c t o n l i n e . c o m

DB4o supports automatic object schema evolution for the
basic class model changes. More complex class model
modifications, like field name change, field type change,
hierarchy move are not automated out-of-the box, but can be
automated by writing small utility update program.

This feature can be viewed as an advantage over relational

model, where any change in schema results in mostly manual
code review and upgrade to match the schema changes. In
most cases the code upgrade can not be automated as the
actual query language is string based (SQL) and is not
recognized by IDE auto completion and code generation tools
like intellisense.

Native Queries

Rather than using string-based API’s (such as SQL, OQL),
programming language itself to access the database and thus
avoid a constant, productively-reducing context switch
between programming language and data access API.

LINQ

LINQ support is fully integrated in DB4o for .NET version
3.5. LINQ allows creating object-oriented queries of any
complexity with the benefit of any complexity with the
benefit of compile time checking, IDE intellisence integration
and automated refactoring.

Due to integration with some open-source libraries DB4o
allows optimized LINQ queries on compact framework.

LINQ can be used both against relational and object data
storage, thus providing a bridge between them, which can be
valued for projects using both technologies, or for project
migration between the two. It can also be used as an
abstraction layer, allowing to easily switch the underlying
database technology.

Portability and cross-platform deployment

DB4o was successfully tested on java FX and Silverlight.

DB4o runs out of the box on Android.

DB4o uses a custom feature called “generic reflector” to
represent class information, when class defamations are not
available, which allows to use it in a mixed java-.NET
environment, for example java client-.NET server and vice-

versa.

Documentation and Support

DB4o provides various sources of documentation: tutorial,
reference documentation, API documentation, online pair
casts and blogs.

Object Manager

Object Manager Enterprise (OME) is a DB4o database
browsing tool. Object Manager Enterprise allows to browse
classes and object in the database, connect to a database
server, build queries using drag and drop, view database

statistics etc.

In addition to graphic interface to DB4o database OME
provides some administrative functions are:

Indexing

Defragmentation

Backup

Community

Over the years the community of DB4o registered members
has grown to over 60,000 members. Many important DB4o
related projects, such as standalone project manager,
encryption support, Mono support etc, are fully driven by
community members.

DB4o provides free access to its code, documentation, forums

and releases to the community members. From time to time,
DB4o holds different contests allowing the community
members to come up with the best suggestion for an
improvement of a specific DB4o aspect, which are later on
integrated into the core code.

Conclusion

From the above discussion it is clear that by converting PDB
file into DB4o, all the problematic issues of PDB file such as
Data identification, Data Errors, Redundant data and
ambiguous data can be avoided. So better version of PDB file
is obtained after this conversion.

Future Work

For future directions we suggest that one should study more
biological databases, which need attention sue to scope of
their research and applications.

They also need high level of text processing before they can
be used and require some bridging technology which can help
them to be utilized with contemporary technologies like cloud
applications. Therefore for future we suggest that work should

be done to develop such conversion and bridging technologies
which would help other legacy data sets to be used efficiently
and high usage value.

REFERENCES:

[1] Christine Kehyayan(2008), “Evolutionary

algorithm for Protein Structure Prediction” ,

International Conference on Advanced computer

theory and Engineering.

[2] Gerard J.Kleywegt, Mark R. Harris. (2004), “The

Uppsala Electron-Density Server”

[3] PROTEIN DATA BANK

http://en.wikipedia.org/wiki/Protein_Data-Bank

[4] DB40

http://en.wikipedia.org/wiki/Db4o

[5] Yancho Wang (2006), “PDB data curation”,

Proceedings of the 28th IEEE EMBS international
conference New York City, USA, Aug 30-sept 3,

2006

[6] T.N Bhat, P.Bourne, Z.Feng, G.Gilliland, S.Jain, wt al
“The PDB data uniformity project”.Nucleic acids
Research,2001, vol.29, No.1,pp214-218.

[7] P.Lord, A. Macdonald, L.Lyon, D.Giaratta, “Data
Deluge to Data Curation”,

[8] T.Warnock, L.V.Einde and R.Moore:NEESit Data
Curation Roadmap.

http://it.nees.org/documentation/pdf/TR-2005-

046.pdf

[9] J.Grey, A.S.Szalay, A.R Thakar, C.Stoughton,

J.vandenBerg:Online Scientific Data Curation,

Publication and Archiving.
[10] P.Buneman, S. Khanna and W.Tan: Data

Provenance:Some basic issues,

http://db.cis.upenn.edu.DL/fsttcs.pdf

http://en.wikipedia.org/wiki/Protein_Data-Bank
http://en.wikipedia.org/wiki/Db4o
http://it.nees.org/documentation/pdf/TR-2005-046.pdf
http://it.nees.org/documentation/pdf/TR-2005-046.pdf
http://db.cis.upenn.edu.dl/fsttcs.pdf

