
ISSN 2277-3061

5558 | P a g e J a n u a r y 0 3 , 2 0 1 5

Retrieving information chunks from a repository of documents’ SIT
Collected from heterogeneous sources

Raad Alwan, Baydaa Al-Hamadani

Associat Prof., Dept. of Computer Science, Philadelphia University, Jordan

Ralwan@philadelphia.edu.jo

Asistant prof., . of Computer Science, Zarqa University, Jordan

bhamadani@zu.edu.jo

ABSTRACT

XML documents are generated from heterogeneous resources. They may share the same data but in different Schema,
which make it difficult to retrieve information from them. In this paper we propose a new technique that first; minimizes the
size of the XML documents by reducing the redundancy of the structure part and generate the repository for these
documents, and second; relaxes and decomposes the XPath query in two stages to determine the relevant documents
and the relevant part within these documents. The results show significant precision and recall comparing with the exact
XPath queries.

Indexing terms/Keywords

Heterogeneous resources, data integrity, query relaxation, XML retrieval

Academic Discipline And Sub-Disciplines

Computer Science.

SUBJECT CLASSIFICATION

Information Retrieval, web technology.

TYPE (METHOD/APPROACH)

Query decomposition, generating SIT.

Council for Innovative Research

Peer Review Research Publishing System

Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY
Vol. 14 , No. 3

www.ijctonline.com , editorijctonline@gmail.com

http://cirworld.com/
http://www.ijctonline.com/

ISSN 2277-3061

5559 | P a g e J a n u a r y 0 3 , 2 0 1 5

1. INTRODUCTION

Nowadays thousands of computer applications and software are used and most of them are generating different kinds of
heterogeneous data. The integration of these data is becoming a significant issue to facilitate the interoperability and
accessibility of these data.

There are several techniques to integrate data such as data warehousing [1-3], semantic integration [4, 5], ontology-based
integration [6, 7], and other ways of technologies. The building block of most of the previous approaches is XML
representation of the data. This paper focuses on the data that are represented in XML format for several reasons. The
main reason is that XML is becoming the standard way of representing and transferring data through the internet. XML
documents have several features that make them easy to be used such as: [8-10] readability by both human and machine,
interoperability between different types of hardware and software, extensibility, generality, internationality, etc.

One of the main aims of data integration is the ability to retrieve information from these data. There are different types of
query languages that are used to retrieve information from XML documents; one of them is XPath query language. Using
XPath is easy, straight forward way, nevertheless, it has the ability to retrieve information from only a specific XML
document. This paper focuses on two main aspects, (1) generate a repository of XML Structure Indexed Tree (SIT)s, and
(2)expand the XPath query language to give it the ability to retrieve information from the generated repository.

Several techniques have been proposed to XML-IR. These techniques can be grouped into two parts, either Content-Only
(CO) or Content-And-Structure (CAS) techniques [11, 12]. CO retrieval follows the same algorithms that retrieve
information from traditional text files ignoring the structure part of the XML documents. On contrast, CAS retrieval takes
into account the structure part of the document to retrieve more precise results.

2. GENERATING THE REPOSITORY

For the purposes of speeding up the retrieving process, our approach reforms the XML documents into SIT representing
the structure part of the document. The data under each root-to-leaf path are stored in containers which are indexed by
that path. Each tree is accompanied with a path-dictionary which has all the tags names and attributes in the document.
This process will achieve several goals:

<?xml version="1.0"?>

<catalog>

 <book id="bk101">

 <author>Gambardella, Matthew</author>

 <title>XML Developer's Guide</title>

 <genre>Computer</genre>

 <price>44.95</price>

 <publish_date>2000-10-01</publish_date>

 <description>An in-depth look at creating applications

 with XML.</description>

 </book>

 <book id="bk102">

 <author>Ralls, Kim</author>

 <title>Midnight Rain</title>

 <genre>Fantasy</genre>

 <price>5.95</price>

 <publish_date>2000-12-16</publish_date>

 <description>A former architect battles corporate zombies,

 an evil sorceress, and her own childhood to become queen

 of the world.</description>

 </book>

 <book id="bk103">

 <author>Corets, Eva</author>

 <title>Maeve Ascendant</title>

 <genre>Fantasy</genre>

 <price>5.95</price>

 <publish_date>2000-11-17</publish_date>

 <description>After the collapse of a nanotechnology

 society in England, the young survivors lay the

 foundation for a new society.</description>

 </book>

</catalog >

Figure 1: An XML example (Book catalog)

ISSN 2277-3061

5560 | P a g e J a n u a r y 0 3 , 2 0 1 5

(1) reduce the size required to store each document by abridging the redundancy in the structure part, (2) combine all the
data under the same path in the same container to fasten the CO retrieval process, (3) the path-dictionary used as a key
to specify the relevant documents, and (4) the SIT is used to achieve CAS retrieval. For each XML document, the SIT; the
path-dictionary; and the containers are added as one unit to the repository.

Example-1: A repository unit

This section exemplifies the process of generating one unit of the repository. As a very short example, Figure 1 is a small
chunk taken from a catalog of books represented as XML document.

There are two ways to mange an XML document, DOM and SAX. Document Object Model (DOM) converts the XML
document into tree-like structure and the document should be entirely stored in the memory to be processed. On the other
hand, simple API for XML document (SAX) scans the document only once, throwing several events such as start-
document, start-element, end-element, and end-document.

Since the repository is dealing with lots of documents, it will be memory consuming to store all the required documents in
the memory and process them through DOM. SAX is such a better way. Through only one scan for each XML document,
the structure is separated from the data; the structured tree is generated; the data in the leaves of the document are
stored in their appropriate containers; and the path-dictionary produced. Figure 2a shows the SIT for the XML sample in
Figure 1. Each node in the SIT is indexed with a unique number that represents the sequence of that node in the original
XML document. The number of bits needed to store the SIT is (𝑵 ∗ 𝐥𝐨𝐠𝟐 𝑵) , where N is the number of nodes in the SIT.

To keep the consistency of data and the relationship between each datum and the other, each data chunk is accompanied
with a unique ID to represent its sequence in the original document. These IDs are useful in the retrieval purposes and in
the process of retaining the original XML document from the repository. The process of retaining the XML document from
the repository form to its original form is beyond the scope of this paper. Figure 2b shows the containers for the XML
document.

Figure 2: SIT for the (Book) sample XML document.

(a)

(b)

(c)

0

1

@2

3

4

5

6

7

8

0 Catalog

1 Book

2 Id

3 Author

4 title

5 Genre

6 Price

7 Published-date

8 Description

/0/1/@2

/0/1/3

/0/1/4

/0/1/5

/0/1/6

/0/1/7

/0/1/8

“bk101”
“bk102”
“bk103”

Gambardella, Matthew
Ralls, Kim
Corets, Eva

XML Developer's Guide
Midnight Rain
Maeve Ascendant

Computer
Fantasy
Fantasy

44.95
5.95
5.95

2000-10-01
2000-12-16
2000-11-17

An in-depth look at creating applications with XML.
A former architect battles corporate zombies, an evil sorceress, and her own childhood to become
queen of the world.
After the collapse of a nanotechnology society in England, the young survivors lay the foundation for a
new society.

ISSN 2277-3061

5561 | P a g e J a n u a r y 0 3 , 2 0 1 5

Algorithm Reform an XML document (D)
pathDictionary=[i0, i1, ..., in]

SIT=[j0, j1, ..., jm]

pathStack=[kp, kp-1, ..., k0]
 R is the target repository

Using SAX to throw and implement the following functions

Function startElement(String eName, String data)
IDOrder= the current order

if (eName ∉ pathDictionary)

 pathDictionary=[i0, i1, ..., in] ⋃ eNamen+1
 Q”= n+1

else

 Q”= q where iq =eName

pathStack=[kp, kp-1, ..., k0] ⋃ [Q”p+1]

currentPath ← k0 + k1 + ...+ kp

if (currentPath ⊈ structured-Tree)
 Add currentPath to structured-Tree

IDOrder++

if (data is not empty)

 Add (IDOrder,data) to the leaf node of SIT

END.
Function endElement(String eName, String data)

 If data ≠ Ø

 Add (IDOrder,data) to the leaf node of pathStack

End.
Function endDocument ()

 Add pathDictionary to R

 For all the N branches in structured-Tree
 index= Collect all the nodes [j0, j1, ..., jk]

 data= the contents of the leaf node for the path [j0, j1, ..., jk]

 Add a Container(index, data) to R

End.

Figure 3: Reforming an XML document algorithm

Each container has an index which represents the complete path from the root to the leaves having the data inside that
container. The path is build depending on the path-dictionary (Figure 2c).

The algorithm of transforming the XML documents to be added to the repository is shown in Figure 3. The algorithm has
the main methods while using the SAX API. These methods are (1) startElement: during which the element names are
added to the pathDictionary and a path is collected. (2) endElement : whenever an end element occurs, a complete path is
constructed and added to SIT if it is not already did. (3) endDocument: at this stage, the SIT; pathDictionary; and the

containers filled with the appropriate data are all added to the repository as one unit.

3. XML RETRIEVAL

XML documents are semi-structured and the retrieval techniques from such documents are more precise than retrieving
information from structured documents [1]. Semi-structured document retrieval (SDR) techniques have the ability to
retrieve information from the structure part and the content part of the XML documents. They focus on retrieving the very
specific required part from the document rather that retrieving the entire document. As an example, SDR retrieve the
required sections in a book rather than just retrieving the whole book. Moreover, SDR techniques provide their users the
ability of determining the part of the document that has the required data. For instance, a user query could be “a graph
about the compression time in compressing XML chapter”. In this case, the “graph” and “chapter” are retrieving the
structure part, while “compression” and “XML compressing” are retrieving the content part of the XML documents.

4. HETEROGENEOUS XML RESOURCES & XPATH

Several query languages have been proposed to retrieve information from XML documents. Each of which use a special
mechanism to reach their goal, but all of them are sharing t the feature in which the user should determine the XML
document(s) that s/he would like to retrieve information from [2-6].

The standard XML query languages are XPath and XQuery and both of them are W3C recommendation [7-9]. XPath is
used to retrieve parts of the XML document either directly or via another query language since it is the core to all other
XML query languages [10]. XPath has the ability to CO and CAS retrieval. It depends on exact path matching to match the
user query with the XML tree. If any missing node or misspelled tag name, there will be no matching and no retrieval
information from the related document. For that reason several techniques have been proposed to relax and rewrite the
XPath query to increase the efficiency and the flexibility of these queries [10-12].

Our work aims to retrieve information from a repository of XML document from heterogeneous sources. These documents
have different structure and scheme even if they have the same data values.

ISSN 2277-3061

5562 | P a g e J a n u a r y 0 3 , 2 0 1 5

 Example-2: heterogeneous resources

Figure 4 exemplifies three SIT from the repository for three different XML documents. All these documents, and more,
having the same data values but arranges in different structure depending on the source of these data. For clarity of the
figure, the indexes of the nodes are replaced by the real tag names and a sample of the actual data is shown in the bottom
of each SIT.

Lots of XPath queries will not have any results when trying to retrieve information from the previous XML documents.
Examples of these queries alongside with the reasons upon no results retrieved are:

1. //book[title = ”Information Retrieval”][price < $40]
//bookstore[genre = ”Computer”]
These two queries are not matching the structure of any document. The names of the nodes are different and the
sequences of the tags are not matching.
2. //bookDB[ISBN = 12345]/author[firstname = ”Ricardo”]
In this query the (ISBN) node is an attribute in the original document, the thing that is not mentioned in the query.
3. //bookDB[@ISBN = 12345]/author[Fname = ”Ritchard”]
The whole query is matching the path of SIT-2, but misspelled the content of the document results on no content
matching.
4. //boostore/title/category
The (title) and (category) nodes are siblings in the XML tree, while the query structure shows that they are parent and
child respectively.
5. //library[YEAR > 2013]
The case letters of one node is not matching (XPath is a case sensitive language)

Relaxing XPath query is one remedy to solve this problem. The relaxation process depends on decomposing the XPath
query into several sub queries. This process passes through two stages, (1) determine the relevant documents and (2)
determine the relevant containers within these documents [13].

4.1 Query Decomposition: Stage-1

In this stage, the XPath query is decomposed into several sub-queries according to the relevancy between the elements in
the query and the elements in the XML documents from the repository.

 Definition- 1 (relevant document): If 𝑸 = {𝒆𝟏, 𝒆𝟐, 𝒆𝟑, … 𝒆𝒏} is the set of elements in the user’s query, and 𝑿 =
{𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … 𝒙𝒎} is the set of all the transformed XML documents in the repository. 𝒙′ ∈ 𝑿 is considered to be relevant

document if ∃𝒆𝒊| 𝒆𝒊 ∈ 𝒙𝒋
′ . 𝑷𝑫, where 𝑷𝑫 is the path-dictionary for the specified document. If so, add 𝒙𝒋

′ to the set of

relevant documents D’ and add 𝒆𝒊 to 𝒒′
𝒋
.

∎

$22.5 2012 Computer Information

Retrieval

SIT-1

bookstore

title year price category

book

Figure 4: Three different SIT for the same data contents

book

Baeza-Yates Ricardo

2012

Computer

Information

Retrieval

SIT-2

bookDB

title year @ISBN genre

Lname Fname

author

2012 Information

Retrieval

SIT-3

Ricardo

Baeza-Yates

book

Library

last-name first-name

title year ISBN author

ISSN 2277-3061

5563 | P a g e J a n u a r y 0 3 , 2 0 1 5

According to definition-1, a XML document is considered to be relevant if it has one or more of the query elements in its

path-dictionary. All the relevant documents 𝑿′ = {𝒙𝟏
′ , 𝒙𝟐

′ , … 𝒙𝒍
′ } are collected in a small repository for relevant XML

documents each of which is accompanied with its corresponding sub-query 𝑸′ = {𝒒𝟏
′ , 𝒒𝟐

′ , …𝒒𝒍
′ }. Note that the number of

sub-queries is equal to the number of the relevant documents. All the elements and attribute names in 𝑄′ are replaced with
its location in the path-dictionary of the relevant document. This process is done to prepare the sub-queries for the second
decomposition stage.

4.2 Query Decomposition: Stage-2

After specifying the relevant documents, the role of this stage is to specify the relevant containers within these documents.
This process causes further decomposition to the sub-queries

Definition-2 (Relevant Container): Given C = 𝐜𝟏, 𝐜𝟐, ⋯ 𝐜𝐧 represents the set of n containers for a relative

document and each of these containers has an index with k elements 𝐏 = 𝐩𝟏, 𝐩𝟐, ⋯𝐩𝐤 , and 𝐪𝐢
′ =

 𝐞𝟏, 𝐞𝟐, ⋯ 𝐞𝐦 represents the set of m elements in the sub-query accompanies C, to select the relevant

containers, follow the steps:

∀𝐪′
𝐢
∈ 𝐐: 𝐟𝐨𝐫 𝐢 = 𝐤 𝐭𝐨 𝟏

∀𝐜𝐢 ∈ 𝐂 𝐢𝐟 𝐩𝐤 ∈ 𝐪𝐢
′

 Add 𝐜𝐢 to C’| C’ is the list of the relevant containers

∀𝐞𝐤 if 𝐞𝐤 ∈ 𝐏, copy ek and add it to the list of the elements in 𝐪𝐢,𝐣
′ to denote a new sub-query.

∎

At the end of this stage only the relevant containers taken from the relevant documents are uploaded into the memory for
ranking process. Each of these containers is accompanied with its sub-query.

Example-3: Query decomposition

Suppose the following XPath query (Q) in which the user requires to retrieve the ISBN and the published year of books

titled “Information Retrieval” for the author’s first name is “Richardo” and the price does not exceed $40:

//book/ISBN [title = ”Information Retrieval”]/published-year [firstName = ”Richardo”][price<$40]

In stage-1 the query is decomposed to three sub-queries in case of the three relevant SITs in Figure 4. Each sub-query
will accompany its relevant document for the purpose of stage-2 decomposition. The three subqueries are as follows:

 SIT1 ~ Q1 : //book[title = ”Information Retrieval”]/published-year [price < 40]

SIT2 ~ Q2 : //book/ISBN[title = ”Information Retrieval”]/published-year [firstName = ”Richardo”]

SIT3 ~ Q3 : //book/ISBN[title = ”Information Retrieval”]/published-year [firstName = ”Richardo”]

For the decomposition stage-2, each sub-query is decomposed into several sub-queries. The number of the new sub-
queries depends on the relative containers from the repository. As an example of mapping the query Q1 to SIT-1, Figure 5
shows the tree representation for the sub-query Q2 (to the left) and its mapping the SIT-2 (to the right).

The mapping process M :Q
𝑀
 SIT depends on the exact matching and approximate matching between the query

elements and the SIT nodes. The approximate matching is derived from the string-similarity algorithm [14] in order to
match the misspelling in the elements and attribute names.

Figure 5: Example of the mapping technique.

book

Baeza-Yates Ricardo

2012

Computer

Information

Retrieval

bookDB

title year @ISBN genre

Lname Fname

author

book

Information

Retrieval

title Published-

year

Richardo

firstName ISBN

ISSN 2277-3061

5564 | P a g e J a n u a r y 0 3 , 2 0 1 5

Definition-3: String-similarity:

let st1 = [s1s2s3 ... sn] and st2 = [c1c2c3 ... cm]

st1Set = [s1s2][s2s3][s3s4]...[sn-1sn]

st2Set = [c1c2][c2c3][c3c4]...[cm-1cm]

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚𝑹𝒂𝒕𝒊𝒐 =
𝟐 × 𝒔𝒕𝟏𝑺𝒆𝒕 ∩ 𝒔𝒕𝟐𝑺𝒆𝒕

 𝒔𝒕𝟏𝑺𝒆𝒕 + 𝒔𝒕𝟐𝑺𝒆𝒕

The choice of string-similarity algorithm is made on the ground that it meets most of XCVQ-QP needs since this algorithm
has the following features:

1. If two strings have minor differences, they are considered to be similar (ex: heap, heard).

2. If two strings have the same words but in different order, they are considered to be similar (ex: data base
management system, managing data base).

The resulting sub queries from stage-2 for Q1 are as follows:

Q2,1 : book/ISBN

Q2,2 : book[title = ”Information Retrieval”]

Q2,3 : book/year

Q2,4 : book[Fname = ”Richardo”]

4.3 Query relaxation

In this stage, the list of sub-queries Qi,j is going to be relaxed to determine the relevancy of each of these queries to the

document. The relaxation types and their costs are listed below:

1. Node insertion: This type of relaxation is done by inserting one or more nodes in the list of available query nodes. To
reach this goal, a comparison between the sub-query Qi,j and the index of the relevant containers is made.

Definition-4 (Node-Insertion): Given a container 𝑐𝑗 ∈ 𝐶 ′ has an index with 𝒌 elements 𝑷 = 𝒑𝟏, 𝒑𝟐, ⋯𝒑𝒌 and

given 𝒒𝒊,𝒋 = 𝒆𝟏, 𝒆𝟐, ⋯ 𝒆𝒎 represents the set of m elements in the sub-query accompanies the i
th

 relevant

document and j
th

 relevant container. The relaxed sub-query 𝒒𝒊,𝒋
′ = 𝒒𝒊,𝒋 ∪ 𝑷 ⊝ 𝒒𝒊,𝒋 . the cost of inserting

node(s) in a sub-query is

𝒄𝒐𝒔𝒕𝑰𝒏 𝒒, 𝒒′ =
 (𝑷 ⊝ 𝒒𝒊,𝒋

′)

 𝑷

 ∎

2. Node renaming: After completing the first stage of relaxation, each sub-query is going to pass through the following
procedure:

Let 𝒒𝒊,𝒋
′ = 𝒆𝟏, 𝒆𝟐, ⋯𝒆𝒎 be the set of elements in the current sub-query, 𝑷 = 𝑝1, 𝑝2, … , 𝑝𝑘 be the

set of elements of the index for the current container associated with 𝒒𝒊,𝒋
′ .

∀ 𝒆𝒊 ∈ 𝒒𝒊,𝒋
′ ,

if 𝒆𝒊 ∉ 𝒑𝒋| 𝟏 ≤ 𝒋 ≤ 𝒌 then find the string-similarity(𝒆𝒊, 𝒑𝒋)

if (SimilarityRatio > 50%) then

 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 = 𝑆𝑈𝐵𝑚,𝑘
𝑖 = 1,𝑗 = 1 𝒆𝒊 𝑤𝑖𝑡ℎ 𝒑𝒋

And the cost of the node renaming process is:

𝒄𝒐𝒔𝒕𝑹𝒆𝒏 𝒒, 𝒒′ =
𝒄𝒉𝒂𝒏𝒈𝒆𝒔

 𝒒𝒊,𝒋
′

3. Node deletion: After inserting all the required nodes from the index of a container, the extra nodes from the query
should be removed.

Definition-5 (Node-deletion): Given a container 𝒄𝒋 ∈ 𝑪′ has an index with 𝒌 elements 𝑷 = 𝒑𝟏, 𝒑𝟐, ⋯𝒑𝒌 and

given 𝒒𝒊,𝒋 = 𝒆𝟏, 𝒆𝟐, ⋯𝒆𝒎 represents the set of m elements in the sub-query accompanies the i
th

 relevant

document and j
th

 relevant container. The relaxed sub-query 𝒒𝒊,𝒋
′ = 𝒒𝒊,𝒋

′ − 𝒒𝒊,𝒋
′′ ⊝ 𝑷 . The cost required to delete

node(s) from a sub-query is:

ISSN 2277-3061

5565 | P a g e J a n u a r y 0 3 , 2 0 1 5

𝒄𝒐𝒔𝒕𝑫𝒆𝒍 𝒒, 𝒒′ =
 𝒒𝒊,𝒋

′ ⊝ 𝑷

 𝒒𝒊,𝒋
′

 ∎

4. Order relaxation: This is the last relaxation process which arranges the order of the nodes in each resulted sub-
queries. The cost of this relaxation is shown in equation (11) such that changes represent the number of changing in the
order of the elements in the sub-query.

𝒄𝒐𝒔𝒕𝑶𝒓𝒅𝒆𝒓 𝒒, 𝒒′ =
 𝒏𝒊| 𝒊 = 𝒄𝒉𝒂𝒏𝒈𝒆𝒔 𝒊𝒏 𝒐𝒓𝒅𝒆𝒓

 𝑸′

After relaxing all the sub-queries, the process of finding the similarity between the containers’ index and the sub-
queries is:

𝒔𝒊𝒎 𝒙, 𝑸 = 𝟏 − 𝒄𝒐𝒔𝒕𝒌 𝒒, 𝒒′ ∀ 𝒒 ∈ {𝑸′} / (𝒌)

∎

5. EXPERIMENTAL EVALUATION

To test the performance of the proposed system, a set of different types of XML documents has been chosen.
These documents have different sizes, number of elements, number of nodes, the depth of the longest path, and the data
ratio (DR) which is calculated as follows (Sakr, 2009):

DRd = Dd Sid / 100

Where DRd is the data ratio for the XML document (d), (D) is the data, and (Si) represents the size of the XML

document. The XML set has DR range between textual documents with DR exceeds 70% to structural document with DR
less than 30% passing through regular documents. The overall size of the data was around 850MB grouped into
categories according to their topic to ease the process of testing the precision and the recall of the retrieved documents.

All the testing were carried out on a personal computer with Intel(R) Core(TM)2 Due CPU processor that has the
speed of 5.50 GHz. The RAM memory of the tested environment is 4.00GB and 300GB of hard disk drive. It has 32-bit
Windows Vista operating system.

During this stage both Query Functional Test (QFT) and Query Performance Test (QPT) [13] were investigated.
For this purpose, a query benchmark was tested from XPathMark [15]since it covers all the required categories of XML
queries. The benchmark is extended to be 100s of queries scattered among axes, node test, operators, and functions
concepts. To explain the testing results, we choose two queries as a sample from each of the four given concepts. The
precision and the recall of the retrieved documents according to the selected queries are shown in Figure 6. The results
show a good precision and recall for all the tested queries, but more experiment needed to compare the relaxed query
with the XPath original query in terms of precision and recall to magnify the significance of our approach.

Figure 7 illustrates the recall of the retrieved documents using the relaxed queries and the exact XPath queries. It is
clear that the relaxation of the query make the recall much higher with average 43%. This test shows clearly that relaxing
the queries increase retrieving the relevant documents significantly.

70%

75%

80%

85%

90%

95%

100%

Precision

Recall

Figure 6: Precision and recall test for selected queries.

ISSN 2277-3061

5566 | P a g e J a n u a r y 0 3 , 2 0 1 5

Figure 8: Sample test of precision and recall for the retrieved documents

Although the recall of the retrieved documents is significant, but the time needed to process a relaxed query (Figure 8) is
more than the time needed to process the exact XPath query. This difference in time is due to the time required to relax
the query and to the matching techniques.

When the complexity of the query increases, the time required to process it increases as well. Axes queries are much
simpler than function queries and they need less time than the others.

6. RELATED WORK

Several approaches have been proposed to retrieve information from heterogeneous XML documents [16-21]. Most these
approaches depended on some semantic web mapping evaluation with the condition of Schema presence, either by query
translation or by using global-as-view and local-as-view integration technique. Other approaches [22-26] does not
necessarily require the global schema to achieve their goals, instead they introduced mapping algorithms to translate the
user’s query.

Latest approaches [27-30] proposed ontology based approached to find some semantic mapping between the user query
and the heterogeneous documents’ relational schema.

Our previous work [31] focused on compressing the XML documents and retrieve information from the compressed
version through vague user queries. To the best of our knowledge, this is the first work that relaxes the user query and
retrieves information from a repository of SIT instead of keeping the original XML documents with their high redundancy in
their structure.

7. CONCLUSION & FUTURE WORK

In this paper we proposed a new approach for retrieving chunks of information from XML documents by transforming the
XML documents into SIT and relax the XPath queries to increase the precision and recall for the retrieved documents. The
transformation process minimizes the redundancy in the structure of the XML documents, which reduces the size of these
documents. The process of relaxing the queries, which is done after two stages of decomposition, were tested and the
results show that more recall and precision were gained. The retrieved information according to a specific query is
structured as XML documents and can be return back to the repository for further retrieval. More development will be
made to our approach including add more functions to the list of XPath functions. (Synonyms) is one of the suggested
functions which uses WordNet to find the synonyms of the nodes or the content to maximise the retrieved information and
simplify the user query.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Relaxed

Exact

0
1
2
3
4
5
6
7

P
ro

ce
ss

in
g

Ti
m

e/
s

Queries tested

Time required to process
relaxed query

Time required to process
XPath query

Figure 7: Comparing the recall of the relaxed query with the exact XPath.

ISSN 2277-3061

5567 | P a g e J a n u a r y 0 3 , 2 0 1 5

ACKNOWLEDGMENTS

Our thanks to the experts who have contributed towards development of the template.

REFERENCES

[1] Manning, C.D., P. Raghavan, and H. Schütze, Introduction to Information Retrieval. 1st ed: Cambridge University

Press. 2009,

[2] Norbert, F. and G. Kai," XIRQL: An XML query language based on information retrieval concepts". ACM T
INFORM SYST, vol. 22 no 2: pp. 313-356.2004

[3] Paparizos, S., S. Al-Khalifa, A. Chapman, H.V. Jagadish, L.V.S. Lakshmanan, A. Nierman, J.M. Patel, D.
Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. "TIMBER:A Native System for Querying XML". in Proceeding of
the ACM SIGMOD International Conference on Management of Data. pp 274-291. 2003

[4] W3C. XML Linking Language (XLink) Version 1.0. 2001 [cited 2014 Available from: http://www.w3.org/TR/xlink/.

[5] W3C. XML Pointer Language (XPointer). 2002 [cited 2014 Available from: http://www.w3.org/TR/xptr/.

[6] W3C. XML Path Language (XPath) 2.0. 2010 [cited 2014 19/10]; Available from:
http://www.w3.org/TR/xpath20/.

[7] Kay, M., XPath 2.0 Programmers Reference. 1st ed. Canada: Wiley Publishing, Inc. 2004,

[8] Andrew Watt, XPath Essentials. 1st ed: John Wiley & Sons Publishing. 2002,

[9] msdn. XPath Syntax. 2010 [cited 2014 Available from: http://msdn.microsoft.com/en-
us/library/ms256471(v=vs.110).aspx.

[10] Cautis, B., A. Deutschy, and N. Onose. "XPath Rewriting Using Multiple Views: AchievingCompleteness and
Efficiency". in Proceeding of the 11th International Workshop on Web and Databases (WebDB 2008). pp 15-19.

2008

[11] Cautis, B., A. Deutsch, N. Onose, and V. Vassalos. "Efficient Rewriting of XPath Queries Using Query Set
Specifications". in Proceeding of the VLDB ‘09. pp 301-312. 2009

[12] Fazzinga, B., S. Flesca, and F. Furfaro," XPath Query Relaxation through Rewriting Rules". IEEE T KNOWL
DATA EN, vol. 23 no 10: pp. 1583-1600.2011

[13] Al-Hamadani, B.T., "Retrieving Information from Compressed XML Documents According to Vague Queries",
PhD thesis, University of Huddersfield, UK, 2011

[14] White, S. How to Strike a Match. 2008 [cited 2010 15/10]; Available from:

http://www.catalysoft.com/articles/StrikeAMatch.html.

[15] Franceschet, M.," XPathMark: Functional and Performance Tests for XPath". Lecture Notes in Computer
Science, Springer, vol. 3671 no 1: pp. 129-143.2005

[16] Bikakis, N., N. Gioldasis, C. Tsinaraki, and S. Christodoulakis, Semantic Based Access over XML Data, in
Visioning and Engineering the Knowledge Society. A Web Science Perspective. Springer Berlin Heidelberg. pp.
259-267.2009

[17] Camillo, S., C. Heuser, and R. Mello, Querying Heterogeneous XML Sources through a Conceptual Schema, in
Conceptual Modeling - ER 2003. Springer Berlin Heidelberg. pp. 186-199.2003

[18] Chaitan, B., G. Amarnath, L. Bertram, scher, M. Richard, P. Yannis, V. Pavel, and C. Vincent," XML-based
information mediation with MIX". SIGMOD Rec., vol. 28 no 2: pp. 597-599.1999

[19] Cong, Y. and P. Lucian. "Constraint-based XML query rewriting for data integration". in Proceeding of the 2004
ACM SIGMOD international conference on Management of data. pp 371-382. 2004

[20] Damjanovic, V., T. Kurz, and R. Westenthaler. "Semantic Enhancement: The Key to Massive and Heterogeneous
Data Pools". in Proceeding of the 20th International Electrotechnical and Computer Science Conference (ERK
2011). pp 413-416. 2011

[21] RodrÃŒguez-Gianolli, P. and J. Mylopoulos, A Semantic Approach to XML-based Data Integration, in
Conceptual Modeling H. S.Kunii, S. Jajodia, and A. Sølvberg, Editors., Springer Berlin Heidelberg. pp. 117-

132.2001

[22] Cindy, X.C., A.M. George, P. Sriram, and M.R. Isabelle. "Query translation scheme for heterogeneous XML data
sources". in Proceeding of the 7th annual ACM international workshop on Web information and data
management. pp 31 - 38 2005

[23] Jayant, M., A.B. Philip, and R. Erhard. "Generic Schema Matching with Cupid". in Proceeding of the 27th
International Conference on Very Large Data Bases. pp 49-58. 2001

http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xptr/
http://www.w3.org/TR/xpath20/
http://msdn.microsoft.com/en-us/library/ms256471(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms256471(v=vs.110).aspx
http://www.catalysoft.com/articles/StrikeAMatch.html

ISSN 2277-3061

5568 | P a g e J a n u a r y 0 3 , 2 0 1 5

[24] Sanz, I., "Flexible Technique for Heterogeneous XML Data Retrieval", PhD Thesis, The Jaume I University,
Spain, 2007

[25] Zhou, X., S. Su, M. Papazoglou, M. Orlowska, K. Jeffery, F. Mandreoli, R. Martoglia, and P. Tiberio, Approximate
Query Answering for a Heterogeneous XML Document Base, in Web Information Systems (WISE 2004), X.
Zhou, et al., Editors., Springer Berlin Heidelberg. pp. 337-351.2004

[26] FAZZINGA, B., S. FLESCA, and A. PUGLIESE," Retrieving XML Data from Heterogeneous Sources through
Vague Querying". ACM T INFORM SYST, vol. 9 no 2: pp. 1-35.2009

[27] Schober, D., M. Boeker, J. Bullenkamp, C. Huszka, K. Depraetere, D. Teodoro, N. Nadah, R. Choquet, C. Daniel,
and S. Schulz," The DebugIT core ontology: semantic integration of antibiotics resistance patterns". Stud Health
Technol Inform, vol. 160 no 2: pp. 1060-1064.2009

[28] Wang, J., J. Lu, Y. Zhang, Z. Miao, and B. Zhou," Integrating Heterogeneous Data Source Using Ontology". J
SOFTW, vol. 4 no 8: pp. 843-850.2009

[29] Yusuf, J.C.M., M.M. Su'ud, P. Boursier, and M. Alam. "Extensive overview of an ontology-based architecture for
accessing multi-format information for disaster management". in Proceeding of the Information Retrieval &
Knowledge Management (CAMP). pp 294-299. 2012

[30] H.Wache, T. V¨ogele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and S. H¨ubner. "Ontology-
Based Integration of Information — A Survey of Existing Approaches". in Proceeding of the In: Proceedings of
IJCAI-01 Workshop: Ontologies and Information Sharing. pp 108-117. 2001

[31] Al-Hamadani, B., Retrieving Information from Compressed XML Documents According to Vague queries., in
Design, Performance, and Analysis of Innovative Information Retrieval, P.J. Lu, Editor., IGI Global. pp. 91-
178.2012

Author’ biography with Photo

Raad Alwan is an associated prof. in Philadelphia University in Jordan. He completed his
undergraduate from the University of Baghdad, Iraq. He finished his MSc. and PhD in University
College Dublin (1980) and Trinity College Dublin (1990), respectively. His research interests are
algorithm analysis and design, information retrieval, and data mining.

Baydaa Al-hamadani is an assistance prof. in Zarqa University in Jordan. She got her Bachelor
degree from the University of Technology in Iraq in 1994, followed by MSc. in the same University in
2000. In 2011, she got her PhD from the University of Huddersfield in the UK from the School of
Informatics. Her fields of interest are XML, compressing and retrieving information, and ontology.

