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ABSTRACT 

The problem of choosing an optimal sequence of transformations, leading to the most efficient parallel version of a 
program remains an open question. Related to this, compilers of the moment only manage to incorporate a set of 
heuristic decisions. This article treats the transformation of the program, addressing and analyzing the range of 
transformations of loop structures, that we consider most appropriate today. We tried to exemplify these 
transformations in case of groups of companies.  
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INTRODUCTION 

With a rather complicated organizational structure, characterized by behavioral flexibility and lack of bureaucracy 
present in all sectors of industry, commerce and services, groups of companies easily adapts to changing economic 
and social conditions. In the idea of implementation of new market information and communication technologies, this 
article proposes a prototype for decomposing existing operations in groups of companies using parallel computing. 

During the development of compiler theory, several changes of source code had been proposed to optimize the 
execution of programs. Most optimizations for sequential cases intend to reduce the number of instructions executed 
by the program using transformations, based on a quantitative analysis of the values conveyed in the program and 
data flow analysis. In addition, recent optimization for parallel execution maximizes parallelism and data localization in 
the memory, using transformations based on the characterization of arrays and data dependency analysis results. 

The stages which must be completed by a compiler to perform optimizations are the following:  

a) Selection of the part of the source program which shall be optimized and the appropriate processing of a particular 
purpose; 

b) Checking if the semantic transformation ensures consistency; 

c) Transformation of the program. 

Techniques for data dependency analysis are used for steps a) and b). The selection stage is the most difficult and 
insufficiently treated topic in the current compiler theory. Due to high costs involved in a full analysis of optimization 
possibilities, compilers typically restrict their range of action to some transformations considered more efficient by their 
builders. On the other hand, there may be sequences of transformations that have the opposite effect. For example, an 
attempt to reduce the number of instructions executed may ultimately reduce performance because of improper use of 
caching. Architectures become more complex, because of significantly increasing optimization directions and decision 
making related to the range of transformations is very complicated. 

1.Transformations for Execution Optimizing 

1.1 Operators Reduction 

Reduction of operators aims for replacing a loop expression with an equivalent expression that uses a less expensive 

operator ([4], [6]). Based on the following loop structure which containing a multiplicity, 

for  i := 1 to n do 

 a[i] := a[i] + c∗i; 

end for 

we can obtain through operator reduction, a transformed version of the loop, in which the multiplication has been 
replaced by addition. 

T := c; 

for i := 1 to n do 

a[i] := a[i] + T; 

  T := T + c; 

end for 

Even if, most of the time, reducing the operators is accompanied by the introduction of an additional variable, time 
saving is achieved by the loop processing significantly. It is justified to put this transformation in the category of 
optimization execution. The most common use of operator reduction is the reduction of expressions that contain 
induction variables ([3],[4],[6]). Table 1 presents various possibilities of reduction of operators. It is assumed that the 
operation in the first column occurs in a loop with index i from 1 to n at the time of processing and the compiler 
initializes a temporary variable T in the expression of the second column. Operation inside the loop is replaced by the 
expression in the third column, and the value of T is updated every iteration with the value in the fourth column. The 
positive effects are obvious. 

Table 1. Operatories reduction (c looping invariant; x can vary between iterations) 

Expression Initializing Using Updating 

c ∗ i T = c T T = T + c 

c
i
 T = c T T = T ∗ c 

(-1)
i
 T = -1 T T = -T 

x / c T = 1/c x ∗ T  
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1.2 The Elimination of Induction Variable 

A variable whose value is derived from the number of iterations that were executed by a loop is called induction 
variable. The control variable of a “for” loop is the most common type of induction variable, but there are other 
variables with this property. The example below illustrates this in case of induction variable j. Induction variable 
elimination simplifies the analysis of index expressions in the data dependency tests, as it is explained in the example 
below, where, after removing the variable j, the analysis is based only on the values of the loop variable i and constant 
n. 

 

1.3 Factorization of Loop Invariants 

When an operation occurs inside a loop, but its result is not changed between iterations (loop invariant), the compiler 
can transfer that computation outside the loop ([3]). We give below a code sequence in which a transcendental 
function of an expensive call is transferred outside the loop. 

for i := 1 to n do 

a[i] := a[i] + sqrt(x); 

end for 

The test that appears in the transformed code ensures that if the loop is not executed again then the transfer code is 
not run either, to prevent triggering an exception. 

 

1.4 Externalization of Conditional Instructions 

This method is applied to loops that contain a conditional instruction with invariant test in the loop. The loop is then 
replicated at each conditional branch instruction, thus avoiding the disadvantage of conditional branching within the 
loop, reducing code size representing the loop body and making possible the parallelization of a possible conditional 
branch instruction as Allen remarks [5]. 

Conditional instructions that are subject to outsourcing can be detected while analyzing the possibilities of factoring, a 
process that identifies loop invariants. 

In the following example the variable X is loop invariant, allowing the loop to be subjected to the operation of 
outsourcing and the true branch to be executed in parallel, as shown in the converted code. Notice that, like the 
factorization of loop invariants, if there's a chance to trigger an exception condition assessment, this should be 
prevented by a test of the possibility of execution. 

 

Fig. 1. Externalization of conditional instructions internal to the loop (loop un-switching). 
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In a double nested cycle in which the inner loop has unknown limitations, if the code is generated directly, there will be 
a test before the inner body of the loop, to determine whether or not it will be executed. The test for the inner loop will 
be repeated each time the outer loop is executed. When the compiler uses an intermediate representation for the 
program, then test is explicit and outsourcing can be used to transfer this test outside the outer loop [27]. 

2. Iteration Reordering Transformations 

In this section we describe the transformations that alter the relative order of execution of the iterations of nesting 
cycles. These changes are mainly used to highlight the opportunities for parallelization and locating data in memory. 
Some compilers use reordering transformations only for perfectly nested cycles. To increase opportunities for 
optimization, compilers can sometimes use fission to extract perfectly nested cycles of imperfect nesting. The compiler 
determines whether a loop can be executed in parallel, examining the associated dependencies induced by loop 
iterations. If all of the loop dependency distances are 0, this means that there is dependency carried over iterations in 
the loop.  

We give below an example where the loop distance vector is (0,1), this way  the outer loop may be parallelized (figure 
2). 

More generally, the p-th loop of a a nested structure of cycles may be parallelized for any distance vector V = (v1, …, 

vp, …, vd ), vp = 0 ∨  q < p : vq > 0 

 

In the case of (b) the distance vectors are {(1,0), (1, -1)}, so that the inner loop may be parallelized. Both references 
from the right part of the expression accesses in reading items on line i-1 of the a array, elements updated in the 
previous iteration of the outer loop. The i-th line items may be calculated and stored in any order. 

 

Fig. 2. Terms dependency loop parallelization. 

2.1 Loops Interchange 

This transformation changes the position of the two loops of a PNL (Perfectly Nested Loop), moving usually one of the 
outer loops innermost position ([7],[34]). Interchange is considered one of the most powerful transformation and can 
improve performance in many ways. It is used mainly to: 

 allow vectorising by exchanging an interior loop  that manifests dependencies, with one exterior loop, 
independently;  

 improve vectorization, loop by shifting largest independent position within the loop; 

 improve the performance of parallel execution by transferring an outside independent cycle nested loop, thus 
increase the granularity and reduce the number of iterations required barrier synchronizations; 

 to reduce looping step, preferably to 1; 

 increase the number of expressions in the loop invariant cycle innermost. 

We should consider that these benefits do not exclude each other. For example, a swap which improves the reuse 
grade of the registers can modify an access pattern with step 1 into an access patern with step n, which may have a 
much lower overall performance, due to a much larger number of mismatches in the memory cache. In the following 
example, the inner loop accesses array a with n steps. We use the convention of storing the array elements in 
columns. With loop exchanging, we convert inner cycle into a cycle where accessing step = 1. 

 

Fig. 3. Loops interchange. 
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For a large array, for which more than one column fits in the cache memory, the optimization reduces the number of 
cache misses for a, from n2 to n2 ∗  de / dl, where de is the dimension of the element and dl the dimension of the line.  

Anyway, the original loop permits  total[i] to be placed in a register, eliminating the load/store operations from inner 
loop.  

This way, the optimized version increases the number of operation load/store for total from 2n to 2n2. If the array a fits 
in cache, it proves that the original loop is more advantageous. For a vectorial architecture, the transformed loop 
allows vectorization by eliminating dependency on total [i] in the inner loop. 

Interchange of the cycles is legal when changed dependencies are legal and looping limits can be interchanged. If two 
loops, p and q, from a PNL of d loops, are interchanged, each dependency vector V = (v1 ,…, vp ,…, vq ,…, vd) from 
the original nested loop becomes V' = (v1 ,…,vq ,…, vp ,…, vd) in the transformed nested loop  

If V' is lexicographically positive, then the dependency relationships of the original loop remain good.  

A double nested loop interchange may be applied only if it has a dependency vector like (< , >). The figure 4(a) 
represents the nested loop with dependency (1, -1), which leads to iteration dependencies presented in figure 4(b). 
The order of iterations performed is indicated by the dotted line. The order of traversal after interchange is shown in 
figure 4(c): some iterations are executed prior dependent iterations, so interchange is illegal. 

 

Fig. 4. The original structure(a);Original order of the scroll(b); Order of the scroll after 
interchange(c). 

The looping interchange of the limits is a simple operation when the iteration space is rectangular, as in the previous 
PNL example.  

In this case the limit cycles are independent of indices inside the loop containing it, and the two can simply be 
interchanged. When the iteration space is not rectangular, calculation of new limit of looping becomes more complex. 
In programming often triangular spaces and even trapezoidal are used. Cycles often occur imperfectly nested whose 
management requires more complex techniques. Some of these issues are addressed in detail in ([36],[39]). 

2.2 The Interior Cycle Translation 

Translation of interior cycle (loop skewing) is a transformation especially useful in combination with interchanged 
cycles ([22], [26], [39]). Translation has been introduced to solve the so-called calculation type: "wave crest" (wave 
front computations). It is called like this because it updates array elements as a wave propagates through space 
iterations. 
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Fig. 5. The loops translations 

Figure 5 (a) shows a typical calculation of wave peak. Each element is calculated by averaging the four nearest 
neighbors. Although the cycles are not parallelizable in their original form, each diagonal of the array ('wave height') 
can be calculated in parallel with each other.  

Area iterations and dependencies are shown in figure 5 (b), the dotted lines indicate the peaks of the wave. 

Translation is performed by adding the outer loop index multiplied by a factor of translation, f, and variable limits inner 
iteration, followed by reduction using the same values for each variable in the inner iteration cycle. Since looping limits 
change accordingly and use index variables to compensate, translation does not change the semantics of a 
transformation program and is always legal. 

The cycle from figure 5 (a) may be subject to interchangeability, but the loop can not be parallelized, because of a 
dependency on both inner loops, (0,1) and in the outer (1.0). This graph is expressed by the existence of edges on the 
horizontal ((0,1)) and vertical ((1,0)). 

The result of the translation by f = 1 is shown in figure 5 (c-d). Transformed code is equivalent to the original, but the 
effect on space iterations aligning "wave peaks" (diagonals) original nesting cycle (that is diagonal from right to left are 
vertical lines), so that for a given value of j all i iterations can be executed in parallel (because there is no vertical 
dependency arcs, iterations for a fixed j don’t depend on one another). 

To highlight this parallelism, loop structure must also be translated to subject interchangeability. After translation and 
interchange, the cycle has a nested distance vectors {(1,0), (1,1)}. The first dependency allows the inner loop to be 

parallelized, because the corresponding dependency distance is 0. The second dependency allows the inner loop to 
be parallelized because it is a dependency in report to previous iterations of the outer loop.  

Translating can highlight parallelism for a nesting of two cycles with the set of distance vectors (Vk) if: 

(Vi = (vi1, vi2) : vi1 = 0 ∧ vi2 > 0) ∧  (Vj = (vj1, vj2) : vj1 > 0 ∧ vj2 ≤ 0)  

When we translate with factor f, the originally distance vector (v1, v2) will become (v1, fv1 + v2). For any dependency 

with v2  0, the scope is to find f  so that fv1 + v2  1. Correct translation of factor f is calculated by taking the 
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maximum of fi = ⌈ (1 – vi2) / vi1⌉  in relation to all the dependencies (Kennedy 1993). The interchanging of translated 
loop is complicated because their looping limits depend on the loop iteration variables. 

For two loops with limits i1 = l1, u1 and i2 = l2, u2 where l2 and u2 are expressions independent by i1, the interior 
translated loop has limits i2 = fi1 + l2, fi1 + u2.  

After interchange, the limits are:  

 for i2 := fl1 + l2 to fu1 + u2 do 

   for i1 := max (l1 , (i2 – u2)/f) to min (u1 , (i2 – l2)/f) do 

          ….. 

An alternative method for treating calculations of wave peak is super-node partitioning (Irigoin 1988). 

2.3 Reversing the Looping Limits 

This transformation changes the direction of the cycle space through its iterations. It is often used in combination with 
other reordering transformations of space iterations, because it changes depending vectors. As independent 
optimization, reverse looping can reduce loop overhead by eliminating the need for a comparison instruction on 
architectures without a comparison-branching instruction such as Alpha [32].  

The cycle is reversed so that the iteration variable decreases to zero, allowing the loop to end an instruction of type 
BNEZ (branch if not equal zero). If loop p from a nesting of d loops is inverted, then for each dependency vector V, the 

element vp is denied. Reversal is legal if each vector result V' is lexicographically positive: if  vp = 0 or  q < p: vq > 0. 

For example, the inner loop of a nested steering vector {(<, =), (<,>)} can be reverted, because resulted dependencies 
are still positive lexicographically. 

Figure 6 shows how the reversal can be possible in swap cycles. (a) has the distance vector (1, -1), which prevents the 
interchange because the vector distance (-1, 1) is not positive lexicographically, which indicates that the swapping 
would change the order of execution of dependent instructions. Nested reverse cycle (b) may be legally interchanged. 

 

Fig. 6.  The interchange of looping limits. 

2.4 Changing the Cycle Granularity  

Changing the granularity of a cycle (strip mining) is a method for adjusting the granularity of an operation, especially a 
parallelized operation ([2],[7],[24]). The original definition of this operation involves transforming a one-dimensional 
cycle to two-dimensional cycles. A dependency on (d) becomes (0, d) and (1, d - s - 1), where S is the step value 
access (strip size). The transformation is always legal in the sense that it will induce negative dependencies in the 
transformed loops. But it is justified only if S ≥ d, otherwise it has no positive effect. Changing the granularity is usually 
performed for the execution on vectorial machines, to make an efficient exploitation of the size of the machine 
registers. We present an example below. 

 

Fig. 7.  Granularity changing of a loop structure 
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Calculation with changed granularity is expressed in matrix notation and it is equivalent to a forall loop. If the iteration’s 
length is not divisible by the step size, then additional changes are needed. For this purpose we use a so-called 
cleanup code [7]- as in the case for the last loop from figure 7 (b). 

One of the most common uses of granularity change is choosing the number of independent calculations in the inner 
cycle of a nested loop structure. For example, in a vectorial machine, the serial cycle can be converted to a series of 
operations on arrays, each array consisting only of the unit of granularity. 

Changing the granularity is also used for some compilations of type SIMD [34] to combine operations in a loop and 
send on distributed memory multiprocessors [13] and temporarily limit the size of pictures generated by the compiler 
([1],[39]). 

Changing granularity often requires other changes. Cycle decomposition may reveal simple cycles nested within a 
cycle that is too complex to undergo to operation of changing granularity. Interchanging of cycles can be used to move 
a parallelized loop in the inner position or nested cycle, to maximize granularity unit size. 

The above examples demonstrate that the granularity changing can create a bigger processing unit, from smaller 
ones.  

Transformation can also be used in the opposite direction, reducing the initial granularity, if execution efficiency is 
necessary. 

2.5 Shrinkage of Loop 

The contraction of a loop (cycle shrinking) is a special case of changing granularity. When a cycle displays 
dependencies which cannot be executed in parallel (i.e. to be converted into a forall statement), the compiler can still 
detect a certain degree of parallelism possible that the distance dependency is greater than 1. 

In this case, the contraction will convert a serial cycle into an external serial cycle and internal parallel cycle [28]. 
Contraction cycle is especially used to highlight fine granularity parallelism. 

For example, in figure 8 (a), a [i + k] is updated in iteration i, and accessed in reading in the iteration i + k, depending 
on the distance k. As a result, the first k iterations can be executed in parallel only with the condition that none of the 
following iterations begin the execution until the first k were not finished. The same thing is then carried out with the 
following k iterations, as shown in figure 8 (b). Space iteration dependencies are shown in figure 8 (c): each group of k 
iterations is thus dependent only from the previous group. 

 

Fig. 8. Space iteration dependencies 

The result is, potentially, an increasing of the speed with k factor, but this k value is usually small (2 or 3). So, this 
optimization is typically limited, to highlight the parallelism which can be made at the instruction level, for example, by 
carrying out processing cycles. Note that the value of k must be constant in the cycle, and the compiler must know at 
least that it is positive. 

2.6 Dividing Iteration Space 

Dividing (loop tiling) is a multidimensional generalization transformation amending granularity. Dividing is primarily 
used to improve the reuse of the cache, dividing the iteration space into so-called divisions (tiles) and transforming 
nested cycle to iterate over them ([2],[12], [21], [39]). Also, the transformation can be used to improve the location of 
the data to the CPU, registers or memory pages. 
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Fig. 9. The division of iteration space 

The need of using this transformation is illustrated in the loop from figure 9 (a) that assigns to a, the transpose 

of b. The j loop is the most interior, the access to b is made with step 1, while the access to a is with n step.  

The interchange is not helpful because it accesses b with n steps. Iterating over divisions (tiles) of space iterations, as it is 
shown in figure 9 (b), the cycle uses each line of the cache. The two inner cycles of matrix multiplications also have such a 
structure, the division being necessary to obtain runtime efficiency in dense matrix multiplication. 

A pair of adjacent cycles can be divided if it can be legally interchanged. After division, the outer pair of cycles can be 
shifted to improve data localization at the division level and inner cycles can be interchanged to exploit parallelism and 
data locality cycle at the registry level. 

Dividing can be expressed as an increase of the granularity of a single iteration of the collections of iterations (this 
collection actually represents division), outer looping having the mission to scroll divisions and the inner are responsible 
for correctly completing iterations in a division. 

2.7 The Looping Decomposition   

The decomposition (also called fission cycle - loop distribution, loop fission or splitting) divides a loop structure in several 
ones. Each new iteration loop has the same space as the original, but contains only a subset of its instructions ([20], [26]). 

The decomposition is used to: 

• create perfectly nested cycles; 

• create sub-cycles with fewer dependencies; 

• improve instruction cache allocation due to lower dimensions of cycles; 

• reduce memory requirements, iterating over fewer arrays; 

• increase the reuse grade of registers. 

Figure 10 is an example in which decomposition removes dependencies and allows parts of a cycle to be executed at the 
same time. 

 

Fig.10. Splitting a looping structure. 

The decomposition can be applied to any cycle, but all the instructions which belong to a cycle of dependency (called 

block  , [20]) should be placed in the same loop, and if S1 precedes S2 in the original loop, the loop containing S1 must 
also precede the one that contains the statement S2. If the loop contains a control flow execution, conversion application 
can show opportunities of decomposition. An alternative is to use a control flow graph of dependencies [19]. 

A specialized version of these transformations is the so-called decomposition by name, first called horizontal 
decomposition partitions by name [2]. Instead of a comprehensive analysis of data dependencies, the loop instructions are 
partitioned into mutually exclusive sets accessing variables. To those instructions is guaranteed their independence. When 



ISSN 2277-3061                                                           

6388 | P a g e                                                S e p t e m b e r  2 7 ,  2 0 1 5  

the arrays are large, the decomposition by the name may increase the amount of localization of data in the cache memory. 
Note that the above loop can’t be decomposed using fission by name because the same instruction accesses the array a. 

2.8 The Fusion of Loops 

Reverse transformation of the decomposition is the fusion can improve performance by: 

• reducing delays due to overhead looping (loop overhead); 

• increase the level of instruction parallelism; 

• improving data localization at the level of registries, cache or memory pages [1]; 

• improving the load balance for parallel execution cycles. 

In figure 10, decomposition allows partial parallelization of the cycle. The merging of the two loops improve the location 
registers and cache, because a[i] does not have to be loaded only once. The fusion also increases the degree of 
instruction-level parallelism by increasing the ratio of floating-point operations and integer values in the loop structure and 
reduces the overhead of the second cycle’s time. If n is large, the split-cycle to run faster would be a vector machine, while 
fused cycle should be less in a superscalar machine. 

In order to be able to merge two cycles, they must have the same limits. If the limits are not identical, it is sometimes 
possible to do the same through their adjustment (suggestive technique called a loop peeling) or by introducing conditional 
expressions in the loop body. 

Two loops with the same limits can be merged if there aren’t two instructions, S1in the first loop and S2 in the second 
loop, so that they would have a dependency S2 → S1 with the direction < in merged loop. The reason why this would be 
incorrect is that before the merge, all instances of S1 are executed before any instance of S2. After the merge, the 
corresponding instances are executed together. If there is an instance of S1 that has a dependency that must be executed 

after an instance of S2, the merger changes the order of execution, as it is shown in figure 11. 

Fig. 11. Two loops containing S1 şi S2 cannot merge if S2 → S1  in the looping structure obtained after merge. 

3. Case Study 

Let us consider the group of companies G which have a mother-firm and n subsidiaries named S1, S2, …, Sn.  The 
reducing of operators is applied in the stage of aggregation of accounts. Mother-firm cumulates all the accounts like in 
figure 12 (multiplication operation and its transformation in the addition operation). 

 

Fig. 12. The reduction of operations in mother-firm 

In the same group we can reduce the variable of induction like in the next figure. We start with 2 variables, i and j, we 
reduce j and we finally have only i. 

 

S1

S2

1 2 3 4
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Fig. 13. Elimination of the loop variable j 

In the stage of consolidation of accounts of the group of companies, we can reduce the number of variables by eliminating 
the loop variable j. The operations of the group companies will be reduced to the elimination of mutual accounts, 
eliminating mutual operations and eliminating reciprocical results using only one variable loop. 

In the stage of factorizations of loop invariants, the incomes of subsidiaries which are reflected in mother–firm can be 
reflected like in Figure 14. 

 

Fig. 14.  The incomes of subsidiaries 

 

Income (MF) = ) 

 

Instead of those operations, we can perform a global operation in which we add all the incomes, after we can calculate the 
income of mother-firm. 

 

Income = Income(S1) + Income(S2) + … + Income(Sn)  

 

and then, Income (MF):= Income +  

 

For determining the consolidation parameter, we use an initial logical schema, see figure 15. 
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Fig. 15. Determination of the consolidation parameter 

The structure Do Case is:  

Do Case 

Case VotingRights>50% do ExclusiveControl 

Case 40%<VotigRights<50% do Exclusive Control 

Case 20%<VotigRights<40% do NotableInfluence 

Otherwise (VotingRights<20%) Outside the assembly 

4. State of Art 

Transformation of Looping Structures is a very important procedure used in parallel computing. Traditional approaches to 
transformation of looping structures are limited in their ability to handle compositions of loop transformations. 

In an article written by Chung in 1990 [10], the authors present a formal mathematical framework which unifies the existing 
loop transformations. This model gave us the idea to apply these transformations in accounting for groups of companies. 

The article of Vivek describes a general framework for representing iteration-reordering transformations. These 
transformations are a special class of program transformations and change the execution order of loop iterations. 

Fernandez et al. in 1995 [11], in their article, present a method for code transformation using non unimodular 
transformations. We described a synergetic model to that presented by Fernandez et al. Jacobson et al. in their article 
describe current dependency analysis tests that can be used to identify ways for transforming sequential C code into 
parallel C code. Quing: “To optimize complex loop structures both effectively and inexpensively, we present a level loop 
transformation, dependency hosting, for optimizing arbitrarily nested loops, and an efficient framework that applies the 
new techniques to aggressively optimize benchmarks for better localization”. 

Jain et al. [17] tell us: Based on important theorems, algorithmic methods are developed for program transformation to 
improve cache performance. A remarkable article is the one from the paper of Louis et al. [23] is a representative material 
in which the authors bring together algebraic, algorithmic and performance analysis results to design a tractable 
optimization algorithm over a highly expressive space.  

Our work, aims to address a new concept of integrating groups of companies in parallel computing. This can be done 
easily by transformation of structures looping: optimization and reordering. In literature this approach has not been found. 

5. Conclusions 

The selection of transformation of looping structures, such as optimization and reordering, is a complex problem. In this 
article we have presented and analyzed the most important and commonly used transformations at the level of looping. 
They are useful in the context of automatic parallelization, although it is interesting to note that some changes were 
originally introduced as optimization of sequential execution. A future article will contain transformations of reordering 
iterations; they proved to be really specific purpose to highlight the inherent parallelism in the sequential programs. We 
tried to apply these transformations in the economics and management groups of firms, their complex activity requiring 
most often parallelization and business transformation for better organizational management. 
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