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ABSTRACT 

A review of some Bayesian data analysis models is proposed, namely the models with one and several 

parameters. A methodology is developed for probabilistic models construction in the form of Bayesian networks using 

statistical data and expert estimates. The methodology provides a possibility for constructing high adequacy probabilistic 

models for solving the problems of classification and forecasting. An integrated dynamic network model is proposed that is 

based on combination of probabilistic and regression approaches; the model is distinguished with a possibility for multistep 

forecasts estimation. The forecast estimates computed with the dynamic model are compared with the results achieved 

with logistic regression combined with multiple regression. The best results were achieved in this case with the combined 

dynamic net model.  

Indexing terms/Keywords 

Bayesian network, Bayesian models, statistical data, forecasting, dynamic Bayesian network, multistep 
forecasts estimation, logistic regression, multiple regression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Council for Innovative Research 

Peer Review Research Publishing System 

Journal: INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 
Vol. 15, No. 3 

www.ijctonline.com, editorijctonline@gmail.com  

 

 

 

http://member.cirworld.com/
http://www.ijctonline.com/
mailto:editorijctonline@gmail.com


ISSN 2277-3061                                                           

6571 | P a g e                                                    D e c e m b e r  2 4 ,  2 0 1 5  

INTRODUCTION 
The modern information technologies and statistical analysis of experimental data is based on usage of a wide 

variety of methods that are characterized by the in-depth and comprehensive analysis of available measurements and 

development of mathematical and statistical models of high degree of adequacy. The models are suitable for solving 

practical problems of prediction and control and studying the objects selected. In analysis of data of different nature, we 

often meet so called uncertainties in the form of incomplete information about the process under study, significant 

influence of random disturbances and measurements noise (errors), nonstationary process structure and its parameters 

[1, 2]. That stresses availability of structural, statistical and parametric uncertainties which create difficulties with analyzing 

the data and reduces quality of the final result: estimate forecasts and/or quality of automatic control. All these problems 

require development of new approaches and methods for modeling, forecasting and control in the presence of mentioned 

uncertainties. 

Quite effective tool for evaluation and consideration of statistical nature uncertainties is adaptive Kalman filter 

(KF), which allows assessing and prediction the state of dynamic processes [2 – 5] in real time. Adaptation of a model to 

the characteristics of random disturbances and measurement noise is achieved in this case by using computed in real-

time estimates of covariance matrices for these random processes. The advantages of optimal filtration procedures are 

the opportunity to take into account explicitly statistical characteristics of disturbances and measurement noise, possibility 

for calculating optimal estimates of state variables, evaluating non-measurable components of a state vector and 

simultaneous evaluation states and some model parameters. The disadvantages of KF are as follows: significant reduction 

in the quality of forecasts, when the number of predicting steps is more than one, sensitivity of the state estimation 

procedure to adequacy of models and significant complication of computational algorithms in the case of non-linear 

system analysis. 

Significant progress has been achieved towards modeling and forecasting processes with uncertainty using fuzzy 

logic and neuro-fuzzy networks [6, 7]. When using the methods of this class the uncertainty is referred to as "fuzzy" 

linguistic variables that require creating rules for decision making. Modeling procedures based on fuzzy logic are 

characterized by relative simplicity and the possibility of adapting to the processes of special class. Disadvantages include 

the need for generating a large number of rules when studying multidimensional processes and the impossibility of 

tracking their use by a decision making person (DMP) while forming the inference.  

Another broad class of modeling methods for prediction and management, which are also aimed at treating 

uncertainty, is based on the Bayesian approach to data analysis [8 – 12]. The methodology of Bayesian data analysis and 

expert estimates is consistent with the logic of DMP actions while analyzing the processes of arbitrary nature, alternatives 

generating and decision making. Prior information about the process under study is complemented by experimental data, 

additional information of qualitative or quantitative nature that may be obtained from various sources. The integrated 

knowledge and data are necessary for estimating posterior probability for variables, parameters, conditions, situations and 

so on. All Bayesian methods are successfully used in all stages of data analysis in modeling, forecasting and decision 

making. At the stage of preliminary data processing are applied probabilistic filtering, filling possible data gaps; at the 

stage of modeling the formation of model structures and parameters estimates; and at the stage of alternatives generating: 

calculation of probabilistic inferences (decisions) using previously constructed models. Bayesian methods have the 

following advantages: the possibility for taking into consideration uncertainties of statistical, structural and parametric 

nature (e.g. using Bayesian networks (BN)); include a large number of heterogeneous variables in one model; availability 

of sufficiently flexible parameter estimation procedures as well as a presence of broad range methods for generating 

accurate and approximate inference. The disadvantages include difficulties of obtaining prior information and relative 

complexity of some computational procedures relating to numerical integration, parameter estimation and forming 

probabilistic inference. Regarding the shortcomings we can say that in some cases they do exist and create difficulties for 

the researcher, but with the acquisition of experience with these methods and quality of relevant computational data 

analysis procedures and knowledge level and scope of these challenges is significantly reduced [8]. 

In view of the needs to improve the methods of fighting uncertainties of various types and the availability of a 

wide range of methods for Bayesian data analysis, it is necessary to know their application possibilities, advantages and 

disadvantages. This is particularly important in the context of decision support system (DSS) development [13 – 15] as far 

as probabilistic methods and models make it possible to obtain important additional alternative methods for decision 

making based on regression analysis, fuzzy logic, neural networks, and so on. To some extent this problem is partially 

solved in this paper through examination of some popular methods of Bayesian data analysis and probabilistic models, 

and an attempt is made for association with other types of models, including regression. 

 

FORMULATION OF THE PROBLEM 
The objectives of the study are as follows: to review some types of Bayesian models and to determine their 

possible use for mathematical modeling of studied processes dynamics and short-term forecasting; to offer an integrated 

model, that is based on a combination of regression and probabilistic approaches; to perform comparative analysis of 

predictions using the proposed combination of probabilistic model with regression models. 
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SOME BAYESIAN METHODS FOR DATA ANALYSIS  
Bayesian analysis (BA) means creating methods and models to form opinions on the probability values for 

selected variables or parameters based on statistical (experimental) data and expert assessments. The essential 

difference between Bayesian methods of regression analysis and other methods is the explicit use of probabilities for 

quantitative description of uncertainties in the inference formed on their basis of [9]. The ease of probability application for 

quantitative description of uncertainties can be explained as follows: (1) by analogy, as far as uncertainty is the result of 

physical randomness, it is logical to describe this ambiguity in the language of random events; (2) axiomatic approach: a 

probabilistic approach leads to statistical inference context of decision making in the form of losses or winnings; in this 

case using the axioms of ordering and transitivity uncertainty should be represented in terms of probability; (3) the 

existence of the principle of probability coherence: according to this principle assigning the probabilities to all possible 

events must be such that a particular person could not get quantified gain as a result of taking part in the game and other 

events. Thus, the probability can play a measure of uncertainty in applied statistics, but definitive proof of this is the 

possibility of successful practical application of relevant models and methods in each case. 

The model development procedure can be divided into three stages: 

– Building a full probabilistic model as a joint probability distribution for all observed and not observed variables that are 

used to describe the state of the investigated object or process; this model should be consistent with the laws of the 

process and available data.  

– Using existing data and knowledge about the process under study, calculate and interpret appropriate posterior 

distribution, that is to find the conditional probability distribution for specified target variables.  

– Assess the quality of the model constructed and interpret the posterior distribution; i.e. assess the quality of data 

description model, identify the sensitivity of the result to the assumptions made at the first stage, and check the 

correctness of the conclusions; if necessary, the model can be modified or expanded, i.e. all three phases of data analysis 

can be repeated.  

It is obvious that considerable difficulties may arise during the first stage in evaluating a priori distributions for 

building probabilistic models. For solving this problem a significant role plays in-depth knowledge about the functioning, 

structure and parameters of the facility and the existing experience of analyzing the processes of specified class. 

However, Bayesian approach to data analysis has the advantage that it is able to present a clear logical interpretation of 

probabilistic and statistical findings, in particular to calculate the probability of hitting unknown quantity at a certain interval 

in contrast to the formation of the confidence interval at a frequency approach. This strict interpretation of the final result of 

the frequency approach is possible only in respect of a certain number of implementations of similar events that repeat in 

practice. In addition, the Bayesian approach provides an opportunity to express uncertainty directly in quantitative 

(probabilistic) form without using multivariable models and complex (hierarchical and often iterative) procedures for their 

construction. Bayesian approach provides researchers conceptually simple methods of forming structured multiparameter 

data models. 

Bayesian statistical inference on the evaluation parameter (in general this is vector of parameters) or 

unobservable values formulated in terms of probability statements. These statements of conditional probability using the 

observed values y , leads to the inference formulated in the form of conditional probabilities )|( yp  or )|~( yyp . 

Obviously, this condition may be extended by the observed explanatory variables or known parameters. 

For the possibility of forming opinions on the probability  subject to availability of observations y it is necessary 

to build a model for joint probability distribution regarding  and y . The joint distribution (joint distribution function) could 

be written as the product of two densities: 

   )|()(),(  yppyp ,  

where 
)(p  is prior distribution for parameter  ; )|( yp  is data distribution. According to Bayes theorem 

posterior conditional density for the parameter can be calculated as follows: 

   

)(

)|()(

)(

),(
)|(

yp

ypp

yp

yp
yp





 ,    (1)  

where 
 )|()()( yppyp , that is the sum is calculated for all values of   (if parameter is discrete) or 

  dyppyp )|()()(  (in the case of continuous parameter). Equivalent to form (1) is approximate  

posterior density 

    )|()(),(  yppyp ,     (2)  
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where the symbol ""  denotes proportionality. 

 In order to form an inference on the unknown value of the measured variable y  we need to know distribution of 

this variable: 

     dyppdypyp )|()(),()( .   (3)  

This probability is often referred to as marginal y  but informative title for it is a priori distribution forecast. Prior since there 

are no previous observaions, and forecast because the distribution is built for the observed values. After receiving the 

observaions y  we can calculate the estimate of the unknown variable value y~  based on previous observations. For 

example, suppose ]...,,,[ 21 nyyyy  is a vector of weight measurements for an object; ],[ 2  is unknown 

true weight of the object and variance of the measurements; y~  is expected value of the next measurement. In this case, 

the distribution of values y~  is called predictor of posterior distributions because it is determined subject to availability of 

observations y :  

     dypyypdyypyyp )|(),|~()|,~()|~(  

      dypyp )|()|~( .     (4)  

The ultimate expression in (4) reflects a posteriori distribution forecast as averaged forecasts for using posterior 

distribution parameter vector  . This last expression can be written because y
,
y~

in this model is relatively independent 

on a certain 
 .  

All statistical methods that use probability, contain elements of subjectivity in the sense that they are based on a 

mathematical idealization of the world, i.e. the processes and facilities are described mathematically. Sometimes they say 

that Bayesian methods are particularly subjective because they require a priori knowledge of distributions. However, in 

most cases scientific data analysis statements (assumptions) are necessary to determine "likelihood" and "a priori" 

component model. For example, in linear regression analysis must be done regarding a priori assumptions about 

distribution of the regression parameters. Here works known general principle: if it is possible to repeat the experiment in 

order to obtain additional observations, the distribution characteristics can be estimated using the data what increases 

objectivity of the analysis. Thus, if it is possible to repeat the experiment, the parameters of prior distribution can be 

completely objectively determined by experimental data. Of course, some elements of analysis that require the use of 

scientific judgment, remain. For example, the choice of methods for experiment planning, selection of data for analysis and 

methods of preliminary processing, the definition of parametric shapes to describe the distributions, the creation of 

methods validation procedures for implementing analysis and selection and use of appropriate quality criteria. 

Consider models with one parameter. A simple example of a statistical model based on Bayesian inference is a 

model with one parameter. Widely used models of distribution of this type are: binomial, normal, Poisson and exponential. 

Binomial distribution is a statistical model which describes the experiment with a sample in which each member of the set 

of possible results takes one of two possible values. This data regarding the permutations condition, that the results do not 

bind to the future, can be interchanged in the analysis. This model is used to evaluate the order parameter, which 

represents the proportion of successful results in the sample, or the probability of success in each experiment; the model 

is as follows: 

ynyy
nCnyBinyp  )1(),|()|(

,
                               (5) 

and all probabilities, that are considered in the context of this model are determined by the condition n . 

Example 1. Consider an example of this model application to evaluation of the sex ratio among the newborns. It 

is known that about two hundred years ago the share of women among infants in Europe was less than 0.5 [9]. Today the 

proportion of accepted value is 0.485. For setting   the binomial models choose the proportion of female infants; an 

alternative parameter may be related proportion of male to female:  /)1( . Let y  is the number of newborn 

girls in n cases of birth; Assume also that birth cases are conditionally independent for a given value  , and the 

probability of the birth of girls is   for all cases. 
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In order to form a conclusion on Bayesian binomial model it is necessary to determine a priori distribution for  . 

A simple version of this assumption is a little information even for distribution in the range ]1,0[ . Approximate posterior 

distribution find as a result of Bayes Theorem application to (5): 

    
ynyyp  )1()|( .     (6)  

If fixed values n  and y  multiplier 
y
nC  does not depend on unknown parameter  , so it can be considered as 

a constant when calculating a posteriori distribution. This form of approximate posterior density is called beta distribution: 

    }|{ y  ~  Beta )1,1(  yny .     (7)  

The posterior distribution is considered as a compromise between a priori distribution and data displayed 

following expressions [8, 9]:     

])|([)( yEEE  ,                        (8)  

   ])|([var)]|(var[)(var yEyE  ,    (9)  

resulting from the substitution of 
),( y

 instead 
),( vu

 of the expression: 
  

    ])|([)( vuEEuE 
.
                   (10)  

The average value of u  can be obtained by averaging the equivalent average marginal distribution for v . In (10) internal 

expectation is averaging u  given v . The posterior distribution contains all the current (existing) information on  , ideally 

on a complete posterior distribution for )|( yp  . The advantage of the Bayesian approach is in flexible procedures 

forming a posteriori conclusions provided by the simulation. 

Models with multiple options. In most practical problems there is a need of evaluation of several parameters. In 

such cases, the ultimate goal is to perform Bayesian analysis of marginal distribution for selected parameters. The 

sequence of actions to achieve this may be as follows: first, we need to get the joint distribution of all unknowns, what is 

followed by integration of the distribution of the unknowns that are not of direct interest to the goal in order to get the 

desired marginal distribution. Another way of finding a solution may be the use of simulation to generate joint distribution 

of values to calculate estimates of unknown parameters. In solving many problems there is no need to assess all the 

unknown parameters of the model, as far as part of the parameters can not be of interest. A classic example is the scale 

of random errors in the measurement of variables. Consider the case of the presence of such generalized settings. 

Assume that the parameter vector   consists of two parts: ],[ 21  , each of which could also be a 

vector. If the conclusion is applicable, 1  and 2  can be seen as related options; let the following information is 

available:  

    },|{ 2y  ~ ),( 2N
.
 

Both parameters 1  
and 2

2   are unknown, but we are interested in  . It is necessary to find through 

observations the conditional distribution )|( 1 yp  . For the joint posterior density distribution it can be written: 

 

   ),(),|()|,( 212121  pypyp ,  

and after averaging over 2 :  

      2211 )|,()|( dypyp .  

An alternative representation is as follows:  

     22211 )|(),|()|( dypypyp ,             (11) 

which shows that a posteriori distribution )|( 1 yp   is a mixture of conventional posterior distributions 2 , 

)|( 2 yp  . The last one acts as a weighting function with different possible meanings of 2 . The result depends on 

the weighting coefficients for a posteriori density 2 and thus we get combination of the information contained in the data 
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and a priori model. Integral (11) is rarely evaluated explicitly, but it reflects an important practical strategy for building 

models with multiple options. A posteriori distribution can be calculated by marginal and conditional simulation. For 

example, initially measured 2  at its marginal posterior distribution, and then 1  – for its conditional posterior distribution 

at a certain value 2 . 

Hierarchical models. In constructing probabilistic models here are many options, among which there are 

relationships that challenge the necessity for building such joint probability distributions for these parameters that reflect 

current relationship between them. For example, in the the study of the effectiveness of treatment of specific type of 

disease and the hospital probability of survival it is logical to expect that the estimates for a sample of hospitals must be in 

some way related. The model that will ensure the existence of such relationships can be created using a priori distribution 

in which the values are considered as elements of common sampling distribution. The main point of such applied 

problems is that observations (the number is variable in the group) make it possible to estimate the distribution parameters 

values, even if these options are not observed. It is naturally to create models of processes hierarchically, i.e. so that the 

observations were described by conditions with respect to certain parameters. In turn, these parameters are described in 

the form of probability in terms of other parameters, called hyperparameters. Such hierarchical representation enables 

better understand (and description) of the problem with multiple parameters, and it also plays an important role in 

development of the solution required for computing procedures.  

When solving practical problems it is important that models that do not have a hierarchical structure, usually are 

unsuitable for describing hierarchical data. If the number of parameters in the model is insufficient, these models 

adequately describe the large amounts of data, and an excessive increase in the number of parameters results in "over-

learning" (good mathematical description of the existing data but poor predictive characteristics). In models of hierarchical 

type we can adjust the number of options to improve the adequacy and, at the same time, the introduction of the 

relationships between parameters makes it possible to avoid retraining [9]. 

Consider a simple example of building a hierarchical model with parameter estimation using data of the 

experiment and a priori distribution obtained on the basis of previous (historical) experiments. We assume that the results 

of current and past experiments form a random sample of the population. As the practice of modeling shows some 

settings in different experiments may have the same value. For example, let several vectors of observations are related to 

various experiments with normal distribution with different mean values but the same variance. In cases when for the 

values of the parameters for the separation there is no other information other than observations we must assume the 

symmetry parameter in their prior distribution. In a probabilistic sense the symmetry means interchangeability parameters 

in their joint distribution, that has to be invariant to permutations of indices. In general, it can be argued that the less 

information is available about the process, there is more ground for introduction of the concept of mutual exchange and 

options. 

In the simplest form of distribution interchangeable with each setting parameters serves as an independent value 

of the a priori distribution, characterized by the vector of parameters that can be written:  





J

j
jpp

1

)|()|(  

As generally known, vector   in the distribution for   has to take into account the uncertainties in  : 

   







  



dppp
J

j
j )()|()(

1

.  

 The key "hierarchical" part of these models is that vector   is known, and has its a priori distribution )(p . 

Thus, proper Bayesian posterior distribution is ),( p : 

    )|()(),(  ppp ,  

and common posteriori distribution is as follows: 

 ),|(),()|,( yppyp       

     )|(),(  ypp .  

Other simplification is possible because hyperparameters 
 
affect only y indirectly through options  . In order 

to build joint probability distribution for ),(   we need to assign a priori distribution for  . If there is no information 
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about these options, then choose the uniform distribution, but you need to be sure that a posteriori distribution can be 

assessed properly. In any case, you must know the domain of these parameters in order to limit the value estimates. 

 Computational procedures necessary to build hierarchical models are similar to procedures used in assessing 

multi models, but they are more complex due to the increased number of parameters. In cases where the distribution 

)|( p  is conjugate to the likelihood )|( yp , evaluating a posteriori distribution )|,( yp  can be done by 

combining the analytical and computational methods. However, in practice it is often necessary to assess not conjugated 

hierarchical models, what leads to some complications with computational procedures. The overall analytical process for 

determining conditional and marginal distributions can be presented in three steps: (1) add joint posterior density 

)|,( yp   of irregular form as the product of a priori distribution hiperparametrs )|( p  conditional distribution 

parameters )|( p and credibility )|( yp ; (2) get analytically conditional posterior density for   given known 

hiperparametrs  ; for fixed observation y  it will function of  , i.e. ),|( yp  ; (3) compute estimates of  using 

Bayesian approach, i.e. find marginal  posterior distribution )|( yp  . The first step is done by definition; the second 

step is quite simply implemented using conjugated models as far as conditional posterior density is a product of 

conjugated posteriori densities for the component j . The third step can be performed via direct integration of posteriori 

joint distribution: 

      dypyp )|,()|( .  

And in the case of standard models, including normal distribution, marginal a posteriori distribution 
 
 will be calculated 

by the formula of conditional probability:     

),|(

)|,(
)|(

yp

yp
yp




 . 

Bayesian network. A popular type of Bayesian model is static and dynamic Bayesian network (BN), the first 

method of their construction was proposed in the eighties of the last century (another name: Bayesian belief network). 

They are successfully used to create mathematical description of causal relationships in simple and complex systems then 

use this description to a probability of forming an inference on chosen variables (states) and / or parameters of the 

process under study. BN is successfully used in systems of technology and medical diagnostics for pattern recognition, 

classification and forecasting. The spectrum of possible applications is continuously growing [11, 12, 15]. 

Formally BN is a probabilistic model in the form of directed acyclic graph (DAG), which arcs reflect explicitly the 

connections (links) between process variables. The DAG can be constructed using expert information or based on data on 

the evolution data for the relevant variables. The data is used for the analysis of conditional independence process 

variables and build tables of conditional probabilities (CPT) for each node variable. Today there is a wide range of 

methods for constructing the network structure. All BN structure estimation algorithms can be divided into two groups: (1) 

heuristic search algorithms for estimating the structure probabilistic model using a scoring method for its evaluation; (2) 

the second group of algorithms is based on analyzing patterns of mutual dependency between variables (or nodes) of a 

model. In applying the first group of algorithms the search process for the structure estimation continues as long as the 

scoring function does not change or it changes very slightly from one iteration to the next. In the first case, for the quality 

of BN structure estimation the following criteria are used: Bayesian scoring function [16], entropy based criterion [17], the 

functional based on the minimum description length [18]. The algorithms in this group require less computational cost, but 

the result of their application can be not the best model structure due to the nature of the heuristic search procedures. In 

the second case, the mutual dependence of nodes is evaluated using the tests for conditional independence [19, 20]. The 

advantage of search algorithms of this group is the possibility of getting asymptotically correct result, but tests for 

conditional independence are sometimes unreliable, especially in cases of small volumes of data. The general procedure 

for constructing BN can be represented as the following steps: 

Step 1. Reduction of the modeling problem dimension that is performed by the known methods. In general, with 

increasing of the number of variables and parameters the number of sessions for estimating these variables and 

parameters increases exponentially; so reducing the number of variables and parameters makes it possible to simplify the 

problem solving. In addition, it is known that the reduction of model dimension improves the accuracy of estimates of the 

parameters as finite data sample contains a limited amount of information. To solve the problem of reduction one could 

use the following methods: the method of principal components (PCM); factor analysis; multidimensional scaling (MDS); 

teaching methods for nonlinear structures, such as linear local dive and others. Factor analysis, PCM and MDS are based 

on the use of their own vectors. Thus, PCM calculate the maximum variance linear projection, determined by eigenvectors 

of covariance matrix dimensions. Factor analysis is based on identifying and modeling the correlation structure of the data, 



ISSN 2277-3061                                                           

6577 | P a g e                                                    D e c e m b e r  2 4 ,  2 0 1 5  

excluding from consideration of random variation data. PCM is more commonly used for the reduction of measurements 

(number of variables), and factor analysis is used for identifying structural relationships between variables. MDS 

calculation method provides projections of small dimensions that best preserve the pairwise distances between the values 

of measurements. Teaching methods in nonlinear structures (configurations) apply to certain types of data of high 

dimensionality (e.g., pattern recognition), which can form explicit material nonlinearity. Generally, the use of the PCM, 

factor analysis or multidimensional scaling to such structures gives a positive result regarding the transformation of data in 

order to bring them to the form required for correct parameter estimation models. 

Step 2. Most of the known structure and parameters estimation algorithms of probabilistic models as well as the 

opinions based on them are based on discrete data. Therefore, this step can be performed zooming distribution of data for 

the purpose of bringing it to easy to use forms and sampling of continuous variables. The "custom" distributions, such as 

distributions with a strong asymmetry, are scaled by logarithm conversion or by the square root approximation to the 

distribution of known forms. It is obvious that this lost original scope of data that must be considered in interpreting the 

results of further evaluation the structures and parameters of models being constructed. For sample data there are 

developed several effective schemes that ensure sustainable compliance in the sampling intervals (e.g., intervals of equal 

width or identical frequencies falling values). 

The size of data may impose limits on the number of intervals and the number of parameters to be estimated. 

Obviously, the sample must be available in each interval. Number of intervals is preferably limited because it enables to 

reduce the number of estimated parameters. Thus, if the network consists of ten binary variables and each variable has on 

average three parent nodes, then the network parameters necessary to evaluate about 80210 3   parameters. If 

the network consists of ten ternary variables (and each variable has three states), then it is necessary to evaluate 

270310 3   parameters.  

On the other hand, the reduction of the data dimension leads to reducing of their resolution (precision of 

measurements and presentation of expert estimates), what reduces the accuracy of input and output data related to their 

assessments of probabilities. The granularity (the depth) of any analysis is determined by the number of options for 

available events and completeness of relevant data. Hence, for in-depth situational analysis of processes and objects of 

arbitrary nature we must have large data sets that provide high precision measurements of inputs and outputs. Most 

algorithms for evaluating of the structure and parameters of network models give better results in the absence of missing 

values, i.e. there are no intervals with missing values. The lack of gaps makes it possible to apply a relatively simple 

parameter estimation method of maximum likelihood, and it is not difficult to implement the method of expectation 

maximizing. 

Step 3. Formulation of semantic constraints. In the process of finding the best network structure we should 

fomulate context-focused semantic restrictions that limit the nuber of search structures. This recommendation applies to 

procedures for any type (i.e., full and partial search). Since the dimension of search space grows exponentially as the 

number of model variables is growing, the exhaustive search is actually impossible. Thus, for the three variables space the 

search of network structures is limited by 25 directed acyclic graphs (11 Markov equivalent classes), and for 10 variables 

that number increases to 
17103   graphs (or 

17101   Markov equivalent classes). The semantic restrictions make it 

possible to reduce the search space to only those network structures that are consistent with the precedence of time 

requirements or other requirements of dependence between the variables. The limited search space automatically 

reduces the time required for data processing. 

An acceptable basis for formulating semantic constraints provides the basic causal theory of structures and 

assessments of experienced experts. In the process of the model building we should at least consider the precedents of 

time interactions between the variables and not make any significant shift in the process of finding the model structure. 

The semantic restrictions contribute to reducing the number of structures that can be implemented, and increase the 

probability of constructing a rational structure. The rational use of knowledge of specific subject area (especially when 

simulating large-scale systems) allows to reduce significantly the number of possible combinations of units without 

reducing the quality of the inference that is based on the constructed model [21]. 

Step 4. Search of the structures for candidate models. In this step, among the set of possible model structures it 

is necessary to choose the best models out of several candidate using appropriate quality criteria and assess their 

options. The search is performed with heuristic algorithms using scoring functions (SF), which enable evaluation of the 

constructed graphic models. The result of using each combination in the form of a scoring function, structure, search 

algorithm and corresponding data sample is a candidate model that specifies the network structure. Thus, the task of 

evaluating the optimal structure is due to the combination of a scoring function and heuristic algorithm. The aim of solving 

this optimization problem is in evaluation of directed acyclic graph G  structure in the space of acceptable structures 

G , which minimizes the value of scoring functions and meets the characteristics of training data D .  
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As the scoring function the posteriori probability distribution can be hired in the form:  

    )()|(),|( GGDDG PPP  ,  

but the exact calculation of this function even for networks of small dimension requires significant computational cost. 

Therefore, when evaluating distribution )|( DGP  it is recommended make simplifications, for example, on the type of 

distribution. Thus, in [22] the algorithm K2 for the implementation of which is considered a priori distribution for uniform 

)(GP  and marginal plausibility )|( GDP  are calculated using conjugate Dirichlet distribution for the network 

settings. The procedure of K2 algorithm is based on "greedy" search of local extremum and reordering of the network 

structure such that each variable iX  is added to the parent node that most affects the increase in value of a scoring 

function. This procedure is repeated for each variable iX  as long as the increase in value will not stop scoring function or 

variable number of parameters exceeds preset threshold. 

A simple approximation of posteriori probability distribution networks provide other scoring functions, including 

Bayesian information criterion (BIC) that is a marginal likelihood estimation model for large samples. It should be noted 

that to obtain acceptable approximation quality does not require large sample; in addition, in this case we do not need to 

specify a priori distribution of the parameters. 

The scoring info-geo function is modification of Bayesian information criterion, which is as follows [22]: 

  


 


 d
N

PIg 2/1))(det(log
2

log
2

)ˆ|(log ID ,  

 

where the first term represents the likelihood logarithm using estimates ̂  obtained by the method of maximum 

likelihood; the second term is a measure of the complexity of the model, which is determined by the number of 

parameters; the last term, which includes Fisher information matrix )(I determinants is interpreted as a measure of 

"geometric" complexity. The first two members of the info-geo function correspond to BIC with negative sign. 

A well-known criterion of learning is minimum description length (MDL). According to Shannon coding theory, if 

distribution )(XP  of random variable X  is known, then optimal length of the code for transferring the value of x  

through the communication channel is determined by the expression: )(log)( xPxL  . The source entropy 

 
x

xPxPPS )(log)()(  is a minimum expected length of encoded message. Any other code that is based 

on the incorrect representation of source messages leads to greater message length. In other words, the better is source 

model, the more compact can be encoded data. 

In the problem of training network by a source of information is some unknown distribution function )( 0hDP , 

where },...,{ 1 NddD    is training data; h  is probabilistic hypothesis concerning the nature of the data. If we 

consider an empirical risk function, )(log)( hDPhDL   which is proportional to the empirical evaluation of the 

distribution error, the difference between the model )( 0hDP  and the distribution is definded by the Kullback-Leibler 

measure )( hDP  as follows: 

  
D D

hDLhDLhDP
hDP

hDP
hDPhDPhDP 0)()()(

)(

)(
log)()()( 00

0
00 . 

Thus, the measure is the difference between the expected length of encoding (by hypothesis) and the minimum 

possible. This difference is always non-negative and it equals to zero only when full convergence of the two distributions is 

observed. The MDL principle generally means that from plurality of models we have to choose the one that makes it 

possible to describe data with maximum compactness and without loss of information. 

To find the global optimum we could apply genetic algorithm or search methods of the Markov chain Monte Carlo 

type [8, 10]. Thus, when using each annealing algorithm the simulating network structure is interpreted as a state of 

Markov chain. At each step of the search the algorithm makes a disturbance for network to move from one state of Markov 

chain to another. This disturbance for a network is implemented using three following operations: adding of an arc, 
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withdrawal of arc or changing arc direction for the opposite. These operations make it possible to create a set of potential 

network structures from which one is randomly selected for further study by selected scoring function (SF). Thus, the 

search algorithm selects the network with improved values of the scoring functions for further processing and removes 

from further consideration the networks with smaller values of SF some using some finite probabilities. This narrows the 

search space by removing acyclic structures and the use of semantic constraints. This algorithm requires more 

computational cost than the "greedy" search algorithm, but it is characterized by a high probability of convergence to 

global maximum. 

Step 5. At this stage comparing is performed of probabilistic candidate models characteristics to select the best 

one for description the process under study. To evaluate the quality of this type of models the criteria of forecasting 

accuracy is applied uusing existing data for testing. If the model is built to solve the classification problem, for assessment 

of their quality it is possible to calculate an average weighted utility (or value) obtained through their probabilistic forecasts. 

This approach is used in cases where we can get information on the cost of possible losses due to incorrect classification 

or utility achieved through proper processing. Quite reasonable metric for comparing the true joint probability distribution (it 

is always unknown) with its assessment is the Kullback-Leibler distance that can be seen as some standardized quality 

assessment for constructed models, including Bayesian networks. 

It is clear that the main criterion for a model quality is the final result of its application to solve relevant practical 

problems that prompted its construction. Bayesian networks provide the opportunity to generate probabilistic inference 

using several different methods and to get, therefore, alternative results, from which one can select the best one. As far as 

the quality of a model operation is affected by the quality of relevant statistical data and expert estimates, it is necessary to 

properly prepare the data according to requirements of estimation theory. 

BN construction in the presence of hidden nodes (variables). The method of calculating the parameters of BN 

was proposed that is based on the expectation maximization algorithm (EM algorithm) in conditions of incomplete input 

information and known network topology. The resulting method describes the whole process of finding unknown 

parameters and consists of the following steps: (1) BN building using training data or expert estimates; (2) generate data 

samples with given network structure (it is used when training data is not available); (3) add hidden nodes to the network 

structure; (4) initialization of unknown parameters of the network; (5) calculation of the network parameters based on data 

generated using EM algorithm. Schematic representation of the proposed method is shown in Fig. 1.  

 
Fig. 1 Scheme of the technique for BN parameters estimation with hidden nodes 
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5) 

3) 
sample 

EM algorithm 
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In the first stage topology of BN is built and the entire network parameters are calculated. At this point there are 

two options: if we know the network structure it should be moved in the software environment and then the CPTs are to be 

computed, or when there is only training data. In the second case the BN structure estimation is carried out in two steps: 

the first step is to built network topology using, say, heuristic algorithm, and the second step  is to find the network 

parameters that are most suitable for the training data. 

In the second stage when the training data is not given or it is not sufficient it is necessary to generate 

pseudorandom samples using the network structure constructed during the first phase. The generating is performed as 

follows. First, a probabilistic inference is calculated using the network without instantiated 

nodes   SjNiSP ij ,...,1;,...,1,  . 

Then we select the node, *i
N , and instantiate selected one of its states, ** ji

S , with probability of this state 

 ** ji
SP . Then the node probabilities are computed after instantiation:  ***|

jiiij SSSP  . The next step is 

selection of the next node. This operation is repeated until there is no non-instatiated nodes. The instantiated states are 

stored as a record in the sample:    SiSS kii N
,...,1,...

1
 . The algorithm is repeated until we create a 

required number of records in the sample. 

The third step is adding of a hidden node to the network. If the node is inserted between several existing nodes, 

then previously existing arcs between them are removed and new ones are created that are related to the hidden node. To 

add hidden parent node, it is created and respective arcs are added. At the next stage the hidden nodes are initialized with 

initial values. These can be randomly generated values or values provided by experts. At the final stage an iterative 

process is implemented by the EM algorithm, which uses pre-generated sample of  unknown parameters estimates for the 

hidden nodes of Bayesian network. 

Prediction using BN. To achieve the possibility of solving the problem of forecasting with BN the static structure 

of probabilistic graphical model should be modified. One such opportunity is to build the so-called additive BN, which 

enables to reduce the size of conditional probability tables in the case of simulation of dynamic systems [23]. Additive BN 

form a basis for building dynamic Bayesian network models (DBN), that enable to calculate and update the values of 

forecasts with the receiving of new evidences (measurements). The probabilistic inference that is based on DBM is 

represented in the form of forecast probability distribution based on time series of current observations. Generally BN is 

represented by the complete joint probability distribution: 





n

i
iin XXpXXp

1
1 ))(|()...,,( , 

where nXX ...,,1  are node variables; )( iX  is a set of parent nodes for variable iX . The probabilistic inference 

regarding the network is represented by conditional probability of acceptance by selected variables some specific values 

due to availability of some evidence (information) on the state of the network: )|( eExX p  That is, X   is any 

set of nodes that takes the values x  provided that the observed components are taking values e . The degree of 

probabilistic network complexity (number of nodes and the links between them) can affect the quality of probabilistic 

inference. Depending on the complexity of a problem the algorithms for exact or approximate inference are used, although 

problems may arise in both cases. For many practical problems the algorithms are available that provide acceptable 

accuracy in a reasonable time. 

The additive probabilistic network models are generally regarded as a class of separable type models. The idea 

of separability is that the overall impact of a basic set of variables mXX ...,,1  on dependent variable can be expressed 

through the influence of individual variables. It is assumed that each independent variable iX  can be in some state 

(states) 
*
is

 
such that it will not create an impact on Y . Thus, conditional 

probabilities ),|( *
jiji xXXYp  mi ...,,1 ,  are describing individual effect of each variable iX  on Y . In 

general, the whole set of separable variables }...,,{ 1 mXX  is divided into subsets lii ...,,1, X , and influence of 

each on dependent varable is determined separately through the conditional probabilities ),|( *
jijiYp xXX  . 

Now the additive network model can be represented as follows: 
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                                         (12)  

where 
*y  are dependent variable states that are evoked by the individual influences of variables lii ...,,1, X ; 

lii ,...,1,0   are model parameters that should satisfy the condition: 

   


 
k

i
jijii xXXYp

1

*
, 1)|( .  

Other constraints on these parameters can be determined for specific applications of the models. Similarly to 

other separable models to determine the conditional probabilities ),...,|( 1 mXXYp  for additive models we have to 

determine only conditional probability due to certain influences. Thus, for BM with binary variables the size  of CPTs can 

be reduced to 
12 m

 to  

m

i

Xi

1

1
2 . 

 The properties of additive models enable us to use for solving the prediction problems BN in combination with 

regression models. If measurements of independent variables can be represented by the 

vector })(,...),({)( 1 ikxikxik m X , then the additive model can be represented as follows: 

   



l

i
i ikflkkkyE

0

))(())(...,),(|)(( XXX ,   (13)  

where )(if  is an arbitrary function. Thus, the equation (13), which reflects the structure of the additive model, is directly 

related to the equation (12): 

   



l

i
iim fXXYE

1
1 )()...,,|( X ,  

where ),|()( *
jijiiii xYEf  XXX .  

 Representation of BN as additive model makes it possible to move to dynamic network model, which will be used 

for calculating forecasts. To compute conditional probabilities for this model the additive decomposition of the type 

described above is used. The main difference of DBN is that the decomposition parameters are computed again after 

receiving new measurements. In DBN the variable )(kY  depends on the set of variables 

})(,...),({)( 1 ikikik m  XXX , i.e. the vector of measurements independent variables over time. The 

conditional probability for the variable )(kY   is determined using the additive decomposition of probabilistic models: 
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                                                 (14)  

Equation (14) is similar in structure to the equation (12). In addition to consideration of new measurements in the 

calculations, it gives an opportunity to update conditional probability by recursively updating values of parameters 

(weighting coefficients) )(,...),(1 kk l . 

The final result (inference) based on the model of this type is performed by the generalized probabilistic method 

of forming inferences presented in [23]. According to this algorithm first an additive decomposition of the total BN on 
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individual components is performed. An inference for certain subsets of nodes of the basic model is performed by L-S 

algorithm [21]. For each subset (clicks) units C  is calculated joint probability distribution. For this purpose is calculated 

probability  CX i
i

X , where iX  is the number of categorical variable values iX . Generally the problem is 

reduced to generating of a set of sub-networks with weights i . This way thi   subnet is formed by setting ijX   

equal to the values 
*

ijx   which were considered above. The algorithm operates recursively as long as the largest 

dimension subsets for each subnet will not be less than the selected threshold. The resulting tree contains leaf subnets, 

which inference is formed using probabilistic weights i . 

The method considered was applied to forecasting asset price related to a pre-specified level, and the results 

were compared with logistic regression. The problems of this type arise in stock assets trading. The characteristics of 

forecast quality obtained by the methods used are shown in Table. 1 (the bottom three lines are describing the results of 

dynamic network models). 

                                       

Table 1 The characteristics of forecast quality obtained by the methods used 

The value of 

threshold c The best model 
The threshold 

probability 

Number of correspondences for 
trend forecast  

(with probability p)
 

0,0075 LR (BS) + MR 0,47 0,869 

0,0065 LR (FS) + MR 0,5 0,861 

0,0060 LR (BS) + MR 0,5 0,846 

0,0055 LR(CHAID) 0,45 0,832 

0,0050 LR (FS) + MR 0,52 0,831 

0,0045 LR (BS) + МR 0,52 0,828 

0,0040 LR (BS) + МR 0,43 0,826 

0,0035 LR (BS) + МR 0,49 0,822 

0,0010 LR (FS) + МR 0,34 0,732 

0,0005 LR (FS) + МR 0,4 0,710 

-0,0020 LR (BS) + МR 0,43 0,677 

-0,0025 LR (BS) + МR 0,47 0,699 

0,0075 DNM-3 0,52 
 

0,729 

 
DNM-3 + FK 

 
0,837 

0,0075 0,52 

 
DNM-5 +FK 

 
0,871 

0,0075 0,52 

Abbreviations in the table: LR – logistic regression; МR – multiple regression; TS – tree 
solutions; DBN – dynamic network model; KF – Kalman filter; FS – forward selection for regression model; 

BS – backward selection; CHAID  – CHi-squared Automatic Interaction Detector. 

The forecasting results obtained by the dynamic network model, are compared to the results obtained with logistic 

regression in combination with multiple regression: 

)(

)(

1min
1

1

1
)(

kx

kx

e

e
xg


 , 

)(739,1)(3ˆ773,0

)(2ˆ81,0)(ˆ616,0)(2ˆ424,0626,0)(1

kyfkR

kRkPkSkx




, 

Where )(3ˆ),(2ˆ),(ˆ),(2ˆ kRkRkPkS  are technical analysis indicators; )(kyf  is output variable of multiple 

regression model that takes the value 1 if the forecasted price increases and 0 if the forecasted price decreases. So the 

best forecasting result was achieved with the logistic regression and the method of independent variables selection by the 

Backward Selection procedure. The variables are in the right hand side together with the values of the stock indicators, 
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and the forecast was made by multiple regression ( 869,0p ). The best result of forecasting when using dynamic 

network model was obtained by the depth of memory 5 and using linear Kalman filter to smooth the data ( 871,0p ). It 

should be noted that the computational cost in the latter case was significantly higher than in the case of logistic 

regression. Also it was found that quality of forecasting depends on the threshold c  against which the prediction is 

performed. 

 

CONCLUSIONS  
An overview of some Bayesian models to analyze the data aiming to determine the possibility of their use for 

predicting development of processes of arbitrary nature was presented. The methodology is proposed for constructing 

probabilistic models in the form of Bayesian networks that is based based on statistical data and expert estimates. The 

technique provides correct building of probabilistic models as directed graphs that displays existing causal relationships in 

data. An integrated probabilistic/regression approach to forecasting was proposed, which is based on a combination of 

regression equations and probabilistic model. It is distinguished from existing models by the possibility of performing the 

multistep forecasting. The forecasting results obtained by the dynamic network model are compared with the results 

obtained with the logistic regression in combination with multiple regression model.  

In predicting the price of the selected stock asset the best results were obtained with logistic regression and the 

method of selection of independent variables for multiple regression by the Backward Selection procedure ( 869,0p ). 

The best results of forecasting using dynamic network model obtained by using the depth of memory equal to five 

sampling periods and the linear Kalman filter to smooth the data ( 871,0p ). It should be noted that the computational 

costs in the latter case were significantly higher than in the case of logistic regression. Also it was found that quality of this 

forecasting depends on the threshold c  value against which the prediction was performed.  

In the future work it is necessary to investigate the possibility of obtaining high-quality forecasting results using 

multivariate hierarchical models and hybrid dynamic network models combined in the frames of specialized decision 

support system.  
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