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ABSTRACT 

This paper gives a detailed analysis of the physics of simple pendulum and the equations governing the motion and 
velocity. The pendulum works in three modes: simple, damped and driving and driving only. The signatures are evaluated 
and simulated by the means of four different approaches: Euler method, Euler-Cromer method, 2

nd
 order Runge-kutta 

method and built-in ODE-23 matlab solver. The simulation results are compared to the measured radar signatures using a 
CANTENNA RADAR originally developed by MIT. The radar was operated in Doppler mode and the micro-Doppler effects 
associated with pendulum is studied. This paper attempts to provide an in-depth background and analysis of how the 
pendulum works and the associated micro-Doppler study using RADAR.  
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INTRODUCTION  

A pendulum is a weight suspended from a pivot so that it can move freely[1]. When a weight is displaced sideways from 

its resting equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the 

equilibrium position. When released, the restoring force combined with the pendulum’s mass causes it to oscillate about 

the equilibrium position, swinging back and forth. The time for one complete cycle, a left swing and a right swing, is called 

the period. The simple pendulum is an idealized mathematical model of a pendulum. When given a push, it will swing 

back and forth at constant amplitude. This model does not account for friction and hence not practical. Real pendulum or 

damped pendulums are subject to friction and air-drag, so the amplitude of their swing declines[1].  This paper talks 

about the physics of both these types of pendulums and studies the doppler signatures associated with it. The results are 

simulated in MATLAB using four different approaches. The simulated results are then compared to the experimental 

results carried out by a self-designed CANTENNA RADAR for validating the Doppler-effect associated with the pendulum.  

This paper is organized as follows: Sections 1.1 and 1.2 overviews equations governing the motion of pendulum and 

comparison of four different approaches used in this paper. Section 2 presents simulation results for modelling the simple 

and physical pendulums. The results are evaluated for calculating the angle and displacement w.r.t time using four 

different approaches. Section 3 provides the  experimental setup using the CANTENNA RADAR and underlines the 

experimental parameters used in the study. Finally, the experimental results are presented for validating the theoretical 

results.  

Equations governing motion of a pendulum: 

The differential equation governing the motion of a simple pendulum is given by: 

                                                           
2

2
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d g

dl l


                                                                                                (1) 

Where, g is acceleration due to gravity, l is the length of the pendulum, and   is the angular displacement.  

Given the initial conditions 0(0)   and 0
(0)

d

dt


 , the solution becomes,  
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This motion is simple harmonic motion where   is semi-amplitude of the oscillation. The period of motion is, then given 

by: 

                                                             2
l

T
g

  ;  0 1                                                                             (3) 

Which is commonly known as Christian Huygen’s law for the period. Note that under small angle approximations, the 

period is independent of the amplitude 0 .  

From these fundamental equations, one can derive all the related parameters of a simple pendulum. Note that the above 

equations holds good for small-angle approximation.  

For amplitudes beyond the small angle approximation, 

The time-period is given by: 
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Note that this integral diverges as 0  approaches the vertical:  

0

lim T
 

   

so that a pendulum with just the right energy to go vertical will never actually get there. Conversely, a pendulum close to 

its maximum can take an infinitely long time to fall down.  

  

Comparison of four different approaches used in this paper: 

This paper used four different approaches to calculate the responses of the pendulum [2]:  

Euler method: Consider the case of simple pendulum with length l, in restoring force of gravity with acceleration g. In the 

approximation that the pendulum is not driven with large angle θ, the equation of motion is given by (1). 

                                                   

2

2

d g

dt l


                                                                   (5) 

The analytical solution to this differential equation is given by: 

                                               0 sin( )t                                                             (6) 

                                                                         Where, 
g

l
   

Euler approximation is based on approximation of two first order differential equations: 

                                      
d g

dt l


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d

dt
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From the definition of derivative, we can state that: 

( ) ( ) ( )
g

t t t t t
l

                                                            (9)                                                              
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Likewise, for   

( ) ( ) ( )t t t t t                                                                                                            (10) 

This approximation to the solution of differential equations is known as Euler Method. 

Euler-Cromer method: The results of Euler method are unstable and violate physics since the approximation 

is valid for only small-angles. A stable approach was given by Cromer based upon the advanced   to calculate the 

advanced , i.e, use 1i   to calculate 1i  . With this minor change, the numerical solution becomes stable and expected 

results are obtained. 

2nd order Runge-kutta method: This method gives the most stable and expected results same as the Euler-

Cromer method. Given a vector n  of unknowns at time nt , and the first order differential equation 

                                                                 ( , )
d

f t
dt


                                                           (11)                                                                                                                   

The second order Runge-Kutta estimate for 1n   is given by: 

1 . ( , )n nk t f t   

1
2 . ( , )

2 2
n n

k t
k t f t


     

                                                                                  3 2nk k                                                                   (12) 

Where, 1n nt t t    

Since the method is explicit; equation (12) doesn’t require a non-linear solver if the function is non-linear. 

ODE-23 MATLAB® solver: The solution using the built in MATLAB® solver ODE23 is somewhat less 

straightforward than those using the other techniques. MATLAB® has a very specific way to define a differential equation, 

as a function that takes one vector of variables in the differential equation, plus a time vector, as an argument and returns 

the derivative of that vector. The only way that MATLAB® keeps track of which variable is inside which vector is the order 

the user choose to use the variables in. one can define the differential equations based on that ordering of variables in the 

vector, define the initial conditions in the same order, and the columns of the results will also be in that order. 

The equations governing the motion of simple and damped, non-linear pendulum are simulated and evaluated using these 

four approaches in MATLAB®.  

The simulation results and the comparison of the results from these methods is provided in section 2.1 and 2.2 

respectively. 

SIMULATION RESULTS: 

The solution of the four methods as described in the previous sections was simulated in MATLAB® [8]. This is because 
MATLAB is a very powerful tool computing system for handling the calculations involved in scientific and engineering 
problems.  
 
With MATLAB, computational and graphical tools to solve relatively complex science and engineering problems can be 

designed, developed and implemented.  

In this section, the simulation results are presented. For modelling of the pendulum, a range of time is selected and the 

aforementioned equations are used for plotting the results in Matlab. The results are provided for two scenarios: 

a) The angle   traversed by the pendulum in a given time. 

b) The measured displacement of the pendulum over a given span of time.  

The results are presented for both simple and physical pendulums to clarify the difference in operation.  
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Solution using the Euler method: 

 

Figure 1: Euler Method 

Note that the oscillations grow with time. Hence, this approach is unstable. 

Solution using the Euler-Cromer method: 
 

This problem with growing oscillations is addressed by performing the solution using the Euler - Cromer method. The 

result is shown below: 

 

Figure 2: Euler-Cromer Method 

The result proves that Euler-Cromer method is stable. 
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Solution using the Runge-Kutta Method: 

 

 Figure 3: Runge-Kutta Method  

As can be easily witnessed, this method yields identical results as the Euler-Cromer method. This is probably because 

both the methods are very similar in operation. 

 

Solution using the ODE-45 MATLAB solver: 

 
 

Figure 4: ODE-45 Solver 
 
This approach is based on Runge-Kutta method and is an inbuilt MATLAB solver. The results prove the point that both 

these approaches are identical in operation.  
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COMPARISON OF DIFFERENT APPROACHES: 

In this section, the performance of the aforementioned approaches are compared. The displacement calculation was 

carried out using the equations presented in the preceding sections and the results are plotted in Matlab.  

                        

Figure 5: Comparison of different approaches  

By visual inspection of the plots, one can establish the fact that displacement is directly correlated with the angle  . It 

can be intuitively understood from the motion of the pendulum. The more   traversed by the pendulum, the larger is 

the displacement from the initial state. The results also present the fact that except the Euler-method, all the other 

approaches provide a stable approach and the responses are identical in magnitude and shape. These results are 

simulated for a simple ideal pendulum where there is no friction taken into account. However, in reality, the damped or 

non-linear pendulum is a good fit as it takes friction into account.  

Next, the paper presents the results for a damped, non-linear pendulum using the Euler-Cromer approach. The 

results from Runge-kutta and ODE-23 solver will also be identical to the Cromer approach as presented in the 

previous sections.  

The motivation for choosing the Euler-Cromer approach arises from the following merits: 

1. This approach is stable as proved in the preceding sections. 

2. The implementation is simple. 

3. Physical modelling of the pendulum is robust as this approach is based on physical laws governing the motion of 

the pendulum. 

4. This method takes into account the dynamic nature of the pendulum and adapts to the changes.  
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Solution for a damped pendulum using the Euler-Cromer method:  

 

Figure 6: Damped pendulum using Euler-Cromer Approach 

This figure tells us that in damping pendulum, the oscillations decrease or slow down with time. This happens 
because of the friction in the surface and air-drag. Hence, in comparison to simple pendulum, the damped 
pendulum’s amplitude decreases with time.  

The paper next analyses the non-linear damped and driven pendulum also known as the physical pendulum. In this 
type of pendulum, the oscillations become stable instead of decaying with time. The reason behind this behavior is 
damping strength. The damping strength limits the decay of the pendulum to a specific period. After that period, the 
pendulum behaves as an ideal pendulum with stable oscillations. 

In this sub-section, the characteristics of the physical pendulum using different values of damping strength is 
analyzed in MATLAB®. The results were shown by applying Euler-Cromer method. 

Solution for a non-linear, damped, driven pendulum: Physical pendulum, using the 
Euler-Cromer method: 

1. Damping Strength =0.5  

 

Figure 7: Damped-Driving pendulum using damping strength = 0.5 
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As clearly witnessed from the figure, the physical pendulum behaves like a simple pendulum if damping strength is small. 
As the damping strength increases, the physical pendulum diverges from the simple pendulum and gives irregular patterns 
as shown in the next figure. In real life scenarios, the damping strength plays a critical role as it is impossible to provide in 
advance. The strength depends on factors such as friction, noise, external disturbances etc.  

2.  Damping Strength =1.2  

 

Figure 8: Damped Driving Pendulum using damping strength = 1.2  

The next section presents the experimental setup for validating the simulations carried out in the preceding sections. The 
experiments were carried out in Radar Lab as a courtesy of Electrical and Computer Engineering Department of 
Mississippi State University.  

 

EXPERIMENTAL SETUP:  

In this section, the paper talks about the radar returns of a simple pendulum and discussion on micro-doppler effects 

asscociated with it. The radar used for the experiments was originally designed and developed by lincoln labaratory, MIT. 

The design and fabrication of the RADAR is available as an open-source[3]. The idea is modified to design a CANTENNA 

RADAR which operates in three different modes: Doppler Mode, Synthetic Aperture Mode and Ranging Mode. For the 

purpose of this paper, the RADAR was operated in Doppler mode for calculating the micro-doppler signatures associated 

with the pendulum.  

Micro-doppler effects of simple pendulum: 
 

To calculate radar backscattering from an oscillating pendulum, ordinary differential equations given in section I and II are 

used for solving the swinging angle and the angular velocity. Therefore, at each time instant during a radar observation 

time interval, the location of the pendulum can be determined. Based on the location and orientation of the pendulum, the 

RCS of the pendulum and the radar received signal can be calculated[4]. In this section, different parameters are 

evaluated for the experiment and a brief study of the radar is performed.  

RADAR Hardware:  

 
The RADAR used in this paper can work in three different modes: doppler mode, ranging mode, and synthetic imaging 

mode. However, for studying the micro-doppler effects, we used the RADAR in doppler-mode.  
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Table 1: NOTIONAL RADAR PARAMETERS 

 

 

 

 

Fully assembled RADAR kit: 
 

 

Figure 9: RADAR setup (Courtesy: Radar LAB, MSU) 

Block-diagram: 

 

 

  Figure 10: Schematic Block Diagram  

  
Table 2 : Experimental Parameters 

 

    

 

                        

 

Mode of operation FMCW 

Frequency-range ISM band of 2.4Ghz 

Transmitted power 10 mW 

Maximum Range 1 km for 10 dBsm targets 

Speed of light 2.99×106 m/s 

Coherent processing interval 0.50 

Center frequency 2.590×106  Hz 

Length of pendulum 10-3 m 

No. of oscillations 10 

Maximum speed of oscillations 10 m/s 

RADAR range from the pendulum 10 m 



I S S N  2 2 7 7 - 3 0 6 1  
V o l u m e  1 5  N u m b e r  5  

I n t e r n a t i o n a l  J o u r n a l  o f  C o m p u t e r s  a n d  T e c h n o l o g y  

6794 | P a g e                                       C o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  

A p r i l  2 0 1 6                                                            w w w . c i r w o r l d . c o m  

 

In the next section, the experimental results are presented. The CANTENNA RADAR was operated in the Doppler mode 

for recording the Doppler signatures of the pendulum. The RADAR was operated in a closed environment to reduce the 

effect of noise on the results.  

EXPERIMENTAL RESULTS:  

The RADAR was operated in doppler mode to record the doppler returns from the pendulum. It was kept at a distance of 
10 m from the pendulum and the pendulum was oscillated 10 times back  and forth. The observations were recorded in 
audio-format (.WAV file) and it was processed and analyzed in MATLAB. The results from the experiment shows the 
micro-doppler effects of a simple pendulum recorded by the RADAR. 
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Figure 11: Experimental Results 

As clearly evident from the results, the micro-doppler returns from the RADAR clearly verifies the theoretical results of the 

simple pendulum modeled in section 2. The precise RADAR returns from the simple pendulum also proves the proper 

functioning of the RADAR in Doppler Mode, signifying its efficiency.  The blue lines shown in the figure are a result of 

noise/disturbance caused by human motion behind the target.  

The experimental results are in direct coherence with the analytical results discussed in the preceding sections. This 

agreement validates the physical modelling of the pendulum and proper operation of the CANTENNA RADAR. The 

Doppler signatures are directly related to the physical laws governing the motion of the pendulum and the experimental 

results also validate this fact. The motivation for selecting simple pendulum as the test target arises from the fact that 

pendulum is a widely discussed object in physics and the laws governing its motion are well-establsihed. 

FUTURE WORK: 

 In the future work, all the parameters of the pendulum and all the modes of the pendulum will be modeled using the 
RADAR. The operation of the RADAR will also be tested in all the three modes to validate the experiments. This paper 
attempts to provide a strong frame-work for studying doppler phenomenon associated with moving targets. Our next goal 
would be to study the micro-doppler effects of humans, moving vehicles etc. and to calculate additional parameters of the 
pendulum. We will also implement noise-cancellation features in the RADAR to make it more robust.  

  

ACKNOWLEDGEMENT: 

I would sincerely like to thank Dr. John Ball who have guided and participated in the discussions related to the paper. I 

would also like to extend my sincere thanks to my colleagues and students who shared their thoughts and ideas leading to 

the completion of this paper.  

 CONCLUSION:  

In this paper, the micro-doppler signatures associated with a simple pendulum is studied. The physical modelling of the 

pendulum was carried out based on the equations governing the motion, velocity and angular accelaeration. In the first 

section, a brief introduction of pendulum is provided. Second section presented the fundamental differential equations and 

subsequently the modelling of the pendulum using  four different approaches were carried out in Matlab. The theoretical 

results are provided for all the three modes of pendulum. In section 4, the experimental setup involving the cantenna radar 
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was demonstrated. Finally, the experimental results were implemented using a cantenna radar employing simple 

pendulum as the test target. The results show a strict correlation with the theoretical modelling and simulations. 
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