
INTERNATIONAL JOURNAL OF COMPUTER AND TECHNOLOGY Vol 20 (2020) ISSN: 2277-3061     https://rajpub.com/index.php/ijct 

1 

DOI:  https://doi.org/10.24297/ijct.v20i.8533 

Model-based Parallelization for Simulink Models on Multicore CPUs and GPUs 

Zhaoqian Zhong1, Masato Edahiro2 

1Ph.D. candidate, Graduate School of Information Science, Nagoya University 

2Professor, Graduate School of Informatics, Nagoya University 

1zhaoqian@ertl.jp 

Abstract 

In this paper we propose a model-based approach to parallelize Simulink models of image processing 

algorithms on homogeneous multicore CPUs and NVIDIA GPUs at the block level and generate CUDA C codes 

for parallel execution on the target hardware. In the proposed approach, the Simulink models are converted to 

directed acyclic graphs (DAGs) based on their block diagrams, wherein the nodes represent tasks of grouped 

blocks or subsystems in the model and the edges represent the communication behaviors between blocks. Next, 

a path analysis is conducted on the DAGs to extract all execution paths and calculate their respective lengths, 

which comprises the execution times of tasks and the communication times of edges on the path. Then, an 

integer linear programming (ILP) formulation is used to minimize the length of the critical path of the DAG, 

which represents the execution time of the Simulink model. The ILP formulation also balances workloads on 

each CPU core for optimized hardware utilization. We parallelized image processing models on a platform of 

two homogeneous CPU cores and two GPUs with our approach and observed a speedup performance between 

8.78x and 15.71x.  

Keywords: homogeneous multicore CPU, NVIDIA GPU, parallelization, model-based development, MATLAB 

Simulink 

1. Introduction  

Model-based development (MBD) with platforms such as MATLAB Simulink [1] has been widely used in 

modeling and simulating complex systems. In many cases of MBD, a Simulink model (or a part of the model) is 

used to process a large amount of data, such as in image processing [2] and scientific data calculation [3]. It is 

possible to accelerate the execution of such model-based applications by executing the data parallelism blocks 

on graphical processing units (GPUs) rather than on central processing unit (CPU) cores for improved 

performance [2]. For implementing such Simulink models on a platform consisting of both CPUs and GPUs, it is 

critical to extract the blocks of data parallelism for execution on GPUs and parallelizing Simulink blocks for 

proper workload balance on CPU cores. 

In this paper we propose a model based approach to parallelize the Simulink models of image processing on 

homogeneous multicore CPUs and NVIDIA GPUs [4]. The target architecture is a platform of homogeneous CPU 

cores and identical GPUs, where the number of CPU cores and GPUs is equal, thereby enabling multiple CUDA 

kernels to be executed concurrently. An available integer linear programming (ILP) formulation is proposed to 

assign blocks, which are used for image processing, to GPUs and other blocks to CPU cores to (a) minimize the 

execution time of the whole model on the target platform, and to (b) distribute the workloads of execution on 

CPU cores in a balanced manner. The main contribution of our work is that the proposed approach implements 

Simulink models that are used to process image data on a platform of homogeneous CPU cores and GPUs. We 

obtained a speedup performance between 8.78x and 15.71x from the evaluation experiments, which 

demonstrates the effectiveness of the proposed approach. 
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Section 2 gives a brief background on related work and previous studies. Section 3 is an overview of our 

proposed approach. Section 4 describes the ILP formulation we use to assign blocks and subsystems of the 

model to the target platform, and Section 5 describes the generation of parallel codes for execution on the 

target platform. In Section 6 we implement image processing algorithms with Simulink and parallelize the 

models with the proposed approach. 

2. Related Work 

MATLAB Simulink is a graphical programming environment for modeling, simulating and analysing dynamical 

systems [1]. Developers can describe their systems in a Simulink model, which is a diagram of function blocks 

and relations between blocks [5], and implement systems on the hardware based on the model. Currently, a 

large amount of research is being done on implementing control models in MBD with Simulink. Commonly, 

Simulink blocks are partitioned and parallelized to processing elements of the target platform using heuristic 

algorithms [6] or mathematical methods [7, 8, 9], and execution codes are generated based the sequential codes 

generated by Simulink Embedded Coder [10]. In previous studies, we used integer linear programming (ILP)-

based approaches to parallelize Simulink models on homogeneous multicore processors [11] and single-ISA 

heterogeneous multicore processors [12]. The objective of the ILP formulations is to reduce the execution time 

of the models on the target processors by minimizing the inter-core communication cost. We also provided 

parallel code generation for execution on processors and observed reasonable speedup performance in 

implementing real-scenario models.  On the other hand, even though Simulink is widely used for control design, 

it is possible to implement data parallelism algorithms, such as in image processing and scientific data 

calculation, in Simulink [2, 3, 13]. In such cases of MBD, a large amount of input data is stored to the workspace 

of MATLAB, and a Simulink model or a part of the model with the combinations of basic Simulink blocks and 

MATLAB function blocks can be used to process the data. When implementing such models to hardware, we 

can use GPUs to execute the data parallelism parts for improved performance. For example, a Simulink model 

for valve body failure mode detection is implemented using CUDA to be executed on GPU for parallel 

computation in [3]. The model is first converted to sequential codes with Simulink Coder and then the codes of 

detecting failure mode are converted to a CUDA kernel to be executed on GPU. If the data processing parts of 

the model are not continuous and distributed on different paths in the block diagram, we can convert them to 

multiple CUDA kernels and use multi-core processor to execute the model for parallel execution. Moverover, if 

there are more than one GPU, the CUDA kernels can be executed concurrently on different GPUs for better 

parallelism. To achieve this goal, we focus on execution platforms where GPUs and CPU cores are in equal 

numbers, so that when multiple GPU kernels are launched simultaneously, they can be executed concurrently to 

parallelize the model execution for improved efficiency.  

However, even though such platform of CPUs and GPUs represents a heterogeneous architecture of multiple 

instruction sets [14], the data communication overhead between the CPU and the GPU is much heavier than 

inter-core communication overhead between CPU cores. Therefore, the sum of the GPU-CPU overhead and the 

execution time of a kernel executed on GPUs may be larger than the execution time of this kernel executed on 

a CPU core. Hence, minimizing communication cost alone [11, 12] cannot solve the parallelization problem with 

GPUs. Moreover, although impressive speedups have been reported for many cases of GPU execution [15, 16], 

the effective speedup improvement of models implemented on the GPU needs to be calculated considering the 

whole execution on both CPUs and GPUs [17, 18]. Therefore, we use the speedup between the execution of the 

parallel code execution on both GPUs and CPUs and the sequential code execution on CPU alone as the metric 

to evaluate the parallelization approach. 

3. Overview of the Proposed Approach 

Fig. 1 provides an overview of the proposed approach for model-based parallelization of image processing 

models on homogeneous multicore CPU cores and NVIDIA GPUs. It is used to find the parallelization solution 

at the block level for input Simulink models and to generate CUDA C code for execution on the target 

architecture. The proposed approach targets single-rate Simulink models in which image processing algorithms 
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are implemented by basic blocks or MATLAB function blocks in MATLAB 2017a MBD environment. Since the ILP 

formulation used in the proposed approach is based on the communicating sequential process (CSP), the 

diagram of the input model must be able to be converted to directed acyclic graphs (DAGs) without feedback 

edges, and the DAG must have at least two paths from the start vertice to the termination vertice.  

 Fig. 1 An overview of proposed approach 
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 Fig. 2 Example of grouping continuous blocks of image processing into an atomic subsystem 

For applications that focus on floating point computation on large amounts of data, GPUs can accelerate them 

by performing computations in parallel, which are much faster than the traditional CPUs [15, 16, 18]. To take this 

advantage in MBD, we firstly specify the data type of blocks/subsystems, which are used to process the image 

data, to 'single' in MATLAB Simulink environment, and cluster the continuous blocks and subsystems of image 

processing into atomic subsystems, with the clustering method similar to [11, 12]. The clustered blocks and 

subsystems should have the same input data size and data type, or shoud be constant blocks connected to a 

block of image processing. Special blocks such as reshape blocks and selector blocks are not clustered to atomic 

subsystems. The function packaging option of these atomic subsystems are set to 'inline' [19]. Therefore, using 

Simulink Embedded Coder the code of the blocks and subsystem inside these atomic subsystems can be merged 

and converted to an independent forloop in the generated sequential code files, and we can generate CUDA 

kernels based on the forloops of the atomic subsystems.  

Moreover, the ILP formulation we use in the proposed approach is based on the graph extracted from the input 

model. By clustering blocks and subsystems we can greatly reduce the number of nodes and edges in the graph, 

and therefore reduce the numbers of variables and constants in the formulation, thereby reducing the solver 

time of the ILP formulation. In Fig. 2, the blocks Gain_255 and MATLAB function block Sobel_edge_fcn are used 

to process pixel data of the input image in a Simulink model. They are clustered to an atomic subsystem 

Sobel_edge with constant blocks x and y, and their data type are specified to single for being converted to a 

CUDA kernel in code generation. 

 

(a) Simulink model of image processing algorithm 
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(b)DAG of the Simulink model 

 

(c)An execution path on the DAG of the Simulink model 

Fig. 3 Example of a Simulink model for image processing and its DAG 

Secondly, we convert the model to a directed acyclic graph (DAG) based on the block diagram of the model and 

add dummy nodes and edges to the DAG based on the communicating sequential process (CSP). The dummy 

nodes ensure that execution of this graph starts at only node and terminates in one node, and the nodes that 

may be assigned to GPUs are launched and terminated on the same CPU core. Based on [5], we define the DAG 

as 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of nodes to which blocks or subsystems are clustered, and 𝐸 ⊆ 𝑉 × 𝑉 is set of 

the connections between nodes, which are extracted from the signal lines between blocks and subsystems. Fig. 

3 (a) shows Simulink model of image processing algorithm and Fig. 3 (b) represents the directed acyclic graph 

(DAG) converted from the model in Fig. 3 (a). To numericalize the execution of the DAG we have to estimate the 

execution times of these nodes, communication overhead between CPU cores and communication overhead 

between a CPU core and a GPU on the target platform. As estimation of execution time is difficult on a 
heterogeneous architecture with GPUs [20], we generate the sequential code of the input model with Simulink 

Embedded Coder, and execute it on the target hardware. The execution times on CPU cores can be obtained 

from the execution of sequential codes. To estimate the execution time on GPUs, we converted the codes of 

atomic subsystems, which consist of blocks and subsystems of image processing, to CUDA kernels using the 

method in [3], and record the execution times of these kernels as the GPU execution times of these nodes.  

Next, we assign the DAG to the processing elements of the target platform with an ILP formulation. We extract 

all execution paths of the DAG using depth-first search. An execution path consists of the sequence of 

connections all directed in the same direction, and a sequence of nodes from the start node to the termination 

node of the DAG and joined by these connections. Each execution path represents an independent dataflow 

execution instance of the model. Fig. 3 (c) shows one of the execution paths extracted from the DAG in Fig. 3 

(b) by depth-first search. We use the sum of the execution times of nodes and communication times of 

connections to denote the execution time of an execution path, which is dynamically calculated in the ILP 

formulation. The longest execution path is the critical path of the DAG, and the execution time of the critical 

path represents the execution time of the model on the target platform. Therefore, the objective function of the 

ILP formulation is to minimize the execution time of the critical path. Finally, we modify the model based on the 

result of the ILP formulation and convert it model to parallel code for execution on the target platform. 

4. ILP Formulation 

4.1 Target Platform 

The target architecture of the proposed approach is a platform of homogeneous CPU cores and NVIDIA GPUs, 

where the number of CPU cores and GPUs is equal and GPUs are identical. In the proposed approach, we do 
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not allow direct data transfer between GPUs. The number of CPU cores/GPUs is represented by 𝑐, and for each 

CPU core 𝑐𝑜𝑟𝑒𝑔, where 𝑔 ∈ [0, 𝑐 − 1], all CUDA kernels launched by 𝑐𝑜𝑟𝑒𝑔 should be executed on only one GPU 

𝐺𝑃𝑈𝑔. We group CPU core 𝑐𝑜𝑟𝑒𝑔 and GPU 𝐺𝑃𝑈𝑔 as a PE 𝑃𝐸𝑔 in our approach. The overhead of copying the input 

image data from the CPU core to the GPU and transfer the modified data from the the GPU to the CPU core is 

denoted by 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑_𝑔𝑝𝑢_𝑐𝑜𝑝𝑦 . Since we use a homogeneous multicore processor and identical GPUs to 

execute the Simulink models in the proposed approach, we assume that the overhead 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑_𝑔𝑝𝑢_𝑐𝑜𝑝𝑦 is 

identical in each PE 𝑃𝐸𝑔 in our approach. 

4.2 DAG definition 

The DAG of the input model is denoted by 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of nodes, and 𝐸 ⊆ 𝑉 × 𝑉 is set of the 

connections between nodes. A node in 𝑉 represents an independent task in the execution of DAG, to which 

blocks, or subsystems are clustered. Connections in 𝐸 are visualized as edges in the DAG. They represent the 

data dependence between these tasks, which are extracted from the signal lines between blocks and subsystems 

in the block diagram of the model. 

The number of nodes in 𝑉 is denoted by 𝑚 and the set of 𝑚 nodes is defined as 𝑉 = {𝑡𝑖|𝑖 ∈ [0, 𝑚 − 1]}. Each 

node is defined as 𝑡𝑖 = (𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑖 ,  𝑔𝑝𝑢_𝑢𝑡𝑖𝑙𝑖), where 𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑖 is the estimated execution time of the node 𝑡𝑖 on 

CPU cores, and 𝑔𝑝𝑢_𝑢𝑡𝑖𝑙𝑖  is the estimated execution time of the node 𝑡𝑖  on GPUs. For nodes that are not 

clustered for GPU execution, their 𝑔𝑝𝑢_𝑢𝑡𝑖𝑙𝑖 are set to 𝑀𝐴𝑋_𝑉𝐴𝐿, which is a very large constant value, to avoid 

being assigned to GPUs. We use 𝑉_𝑔𝑝𝑢 = {𝑡_𝑔𝑝𝑢𝑖|𝑖 ∈ [0, 𝑚_𝑔𝑝𝑢 − 1]} to represent the set of nodes that are 

clustered for GPU execution and 𝑚_𝑔𝑝𝑢 is the number of such nodes, where 𝑚_𝑔𝑝𝑢 < 𝑚. Each node in 𝑉_𝑔𝑝𝑢 

is denoted by a three-tuple: 𝑡_𝑔𝑝𝑢𝑖 = (𝑡_𝑔𝑝𝑢_𝑖𝑑𝑖 ,𝑡_𝑔𝑝𝑢_𝑓𝑟𝑜𝑚𝑖 ,𝑡_𝑔𝑝𝑢_𝑡𝑜𝑖), where 𝑡_𝑔𝑝𝑢_𝑖𝑑𝑖 represents the ID of 

the responding node of 𝑡_𝑔𝑝𝑢𝑖  in 𝑉 . 𝑡_𝑔𝑝𝑢_𝑓𝑟𝑜𝑚𝑖  represents the id of node preceding to 𝑡_𝑔𝑝𝑢𝑖  in 𝑉 , and 

𝑡_𝑔𝑝𝑢_𝑡𝑜𝑖 represents the ID of node succeeding to 𝑡_𝑔𝑝𝑢𝑖 in 𝑉. 

The number of connections is denoted by 𝑛. We define the set of 𝑛 connections as 𝐸 = {𝑒𝑗|𝑗 ∈ [0, 𝑛 − 1]}. Each 

connection is defined as a three-tuple: 𝑒𝑗 = (𝑒𝑑𝑔𝑒_𝑠𝑗 , 𝑒𝑑𝑔𝑒_𝑡𝑗 , 𝑒𝑑𝑔𝑒_𝑡𝑖𝑚𝑒𝑗) , where 𝑒𝑑𝑔𝑒_𝑠𝑗  and 𝑒𝑑𝑔𝑒_𝑡𝑗 

represent the id of start node 𝑡𝑒𝑑𝑔𝑒_𝑠𝑗
∈ 𝑉 and termination node 𝑡𝑒𝑑𝑔𝑒_𝑡𝑗

∈ 𝑉 joined by the connection 𝑒𝑗 , and 

𝑒𝑑𝑔𝑒_𝑡𝑖𝑚𝑒𝑗 represents the inter-core overhead of 𝑒𝑗 if 𝑡𝑒𝑑𝑔𝑒_𝑠𝑗
 and 𝑡𝑒𝑑𝑔𝑒_𝑡𝑗

 are not assigned to the same core. 

Next, we use depth-first search on the DAG to extract all execution paths. The number of execution paths is 

denoted by 𝑟, and the set of 𝑟 execution paths is denoted by 𝑃 = {𝑝𝑘|𝑘 ∈ [0, 𝑟 − 1]}. Each execution path is 

defined as 𝑝𝑘 = (V’𝑘,  E’𝑘), where V’𝑘 ⊆ 𝑉 represent the nodes on execution path 𝑝𝑘 , and E’𝑘 ⊆ 𝐸 represent the 

connection of nodes on execution path 𝑝𝑘 . 

4.3 Variables 

We use the following variables in our ILP formulation to denote which core or GPU a node 𝑡𝑖 ∈ 𝑉 is assigned 

to: 

• 𝑥_𝑐𝑜𝑟𝑒𝑖,𝑔: equals to 1 if node 𝑡𝑖 is assigned to CPU core 𝑐𝑜𝑟𝑒𝑔 ; otherwise equals to 0. 

• 𝑥_𝑔𝑝𝑢𝑖,𝑔: equals to 1 if node 𝑡𝑖 is assigned to GPU 𝐺𝑃𝑈𝑔; otherwise equals to 0. 

We use the following variables to denote whether the start node and termination node of a connection 𝑒𝑗 are 

assigned to the same CPU core or whether one of them is assigned to GPU: 

• 𝑦_𝑔𝑝𝑢𝑗 : equals to 1 if either end node, 𝑒𝑑𝑔𝑒_𝑠𝑗 or 𝑒𝑑𝑔𝑒_𝑡𝑗, is assigned to a GPU; otherwise equals to 0. For 

∀𝑗 ∈ 𝐸, 𝑦_𝑔𝑝𝑢𝑗 is calculated as: 
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∀𝑗 ∈ 𝐸: 𝑦_𝑔𝑝𝑢𝑗 = ∑ (𝑥_𝑔𝑝𝑢𝑒𝑑𝑔𝑒_𝑠𝑗,𝑔 + 𝑥_𝑔𝑝𝑢𝑒𝑑𝑔𝑒_𝑡𝑗,𝑔)

𝑔∈[0,𝑐−1]

 (1) 

• 𝑦_𝑐𝑝𝑢𝑗：equals to 0 if both end nodes, 𝑒𝑑𝑔𝑒_𝑠𝑗  and 𝑒𝑑𝑔𝑒_𝑡𝑗, are assigned to the same CPU core; otherwise 

equals to 1. For ∀𝑗 ∈ 𝐸, 𝑦_𝑐𝑝𝑢𝑗 is calculated as: 

∀𝑗 ∈ 𝐸: 𝑦_𝑐𝑝𝑢𝑗 = ∑ 𝑎𝑏𝑠(𝑥_𝑐𝑜𝑟𝑒𝑒𝑑𝑔𝑒_𝑠𝑗,𝑔 − 𝑥_𝑐𝑜𝑟𝑒𝑒𝑑𝑔𝑒_𝑡𝑗,𝑔)

𝑔∈[0,𝑐−1]

− ∑ 𝑎𝑏𝑠(𝑥_𝑔𝑝𝑢𝑒𝑑𝑔𝑒_𝑠𝑗,𝑔 − 𝑥_𝑔𝑝𝑢𝑒𝑑𝑔𝑒_𝑡𝑗,𝑔)

𝑔∈[0,𝑐−1]

 

(2) 

For each 𝑃𝐸𝑔 , we use 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑝𝑒𝑔 to denote the total workload that is executed on CPU core 𝑐𝑜𝑟𝑒𝑔 and 𝐺𝑃𝑈𝑔. 

Each 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑝𝑒𝑔  consists of the execution times of nodes which are assigned to 𝑐𝑜𝑟𝑒𝑔 , the inter-core 

overhead of 𝑒𝑗 whose 𝑒𝑑𝑔𝑒_𝑡𝑗 is assigned to CPU core 𝑐𝑜𝑟𝑒𝑔 , and the execution times of nodes on GPU which 

are assigned to GPU 𝐺𝑃𝑈𝑔 . In the proposed approach, we assume that the latency of transferring data from CPU 

core 𝑐𝑜𝑟𝑒𝑔 to other CPU cores can be ignored in 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑝𝑒𝑔; on the other hand, data transfer from other 

cores to CPU core 𝑐𝑜𝑟𝑒𝑔  cannot be parallelized with processing on CPU core 𝑐𝑜𝑟𝑒𝑔 , so that the inter-core 

overhead of transferring data from other cores to CPU core 𝑐𝑜𝑟𝑒𝑔  should be added to 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑝𝑒𝑔 . The 

following variable is used to mark whether a connection 𝑒𝑗 is used for transferring data from other cores to CPU 

core 𝑐𝑜𝑟𝑒𝑔 : 

• 𝑦_𝑒𝑛𝑑_𝑐𝑜𝑟𝑒𝑗,𝑔: equals to 1 if 𝑒𝑑𝑔𝑒_𝑡𝑗 is assigned to a CPU core 𝑐𝑜𝑟𝑒𝑔; otherwise equals to 0. For ∀𝑗 ∈ 𝐸, ∀𝑔 ∈

[0, 𝑐 − 1], 𝑦_𝑒𝑛𝑑_𝑐𝑜𝑟𝑒𝑗,𝑔 is calculated as: 

∀𝑗 ∈ 𝐸, ∀𝑔 ∈ [0, 𝑐 − 1]: 𝑦_𝑒𝑛𝑑_𝑐𝑜𝑟𝑒𝑗,𝑔 ≤ (𝑥_𝑐𝑜𝑟𝑒𝑒𝑑𝑔𝑒_𝑡𝑗,𝑔 + 𝑦_𝑐𝑝𝑢𝑗)/2 (3) 

∀𝑗 ∈ 𝐸, ∀𝑔 ∈ [0, 𝑐 − 1]: 𝑦_𝑒𝑛𝑑_𝑐𝑜𝑟𝑒𝑗,𝑔 ≥ 𝑥_𝑐𝑜𝑟𝑒𝑒𝑑𝑔𝑒_𝑡𝑗,𝑔 + 𝑦_𝑐𝑝𝑢𝑗 − 1 (4) 

In addition, if any CUDA kernel is launched on the CPU core 𝑐𝑜𝑟𝑒𝑔 , data transfer overhead 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑_𝑔𝑝𝑢_𝑐𝑜𝑝𝑦 

should be added to 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑝𝑒𝑔 . We use the following variable to denote whether any CUDA kernel is 

launched on the CPU core 𝑐𝑜𝑟𝑒𝑔 : 

• 𝑧_𝑔𝑝𝑢𝑔 : equals to 1 if at least one node is assigned to 𝐺𝑃𝑈𝑔 ; otherwise equals to 0. For ∀𝑔 ∈ [0, 𝑐 − 1], 

𝑧_𝑔𝑝𝑢𝑔 is calculated as: 

∀𝑔 ∈ [0, 𝑐 − 1]: 𝑧_𝑔𝑝𝑢𝑔 ≤ ∑ 𝑥_𝑔𝑝𝑢𝑖,𝑔

𝑖∈V

 (5) 

∀𝑔 ∈ [0, 𝑐 − 1], ∀𝑖 ∈ 𝑉: 𝑧_𝑔𝑝𝑢𝑔 ≥ 𝑥_𝑔𝑝𝑢𝑖,𝑔 (6) 

For ∀𝑔 ∈ [0, 𝑐 − 1], 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑝𝑒𝑔 is calculated as: 

∀𝑔 ∈ [0, 𝑐 − 1]: 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑝𝑒𝑔

= 𝑧_𝑔𝑝𝑢𝑔 ∗ 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑_𝑔𝑝𝑢_𝑐𝑜𝑝𝑦 + ∑(𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑖 ∗ 𝑥_𝑐𝑜𝑟𝑒𝑖,𝑔)

𝑖∈V

+ ∑(𝑔𝑝𝑢_𝑢𝑡𝑖𝑙𝑖 ∗ 𝑥_𝑔𝑝𝑢𝑖,𝑔)

𝑖∈V

+ ∑(𝑒𝑑𝑔𝑒_𝑡𝑖𝑚𝑒𝑗 ∗ 𝑦_𝑒𝑛𝑑_𝑐𝑜𝑟𝑒𝑗,𝑔)

𝑗∈𝐸

 

(7) 

We use 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑡𝑜𝑡𝑎𝑙 to denote the total workload on all PEs. 

𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑝𝑒𝑔

𝑔∈[0,𝑐−1]

 (8) 
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4.4 Objective Function 

For each execution path 𝑝𝑘 , the sum of the estimated execution times of nodes and communication times of 

connections on the path is used to represent the length of each path. We use 𝑝_𝑙𝑒𝑛𝑔𝑡ℎ𝑘 to present its execution 

time, which is calculated as: 

∀𝑘 ∈ 𝑃: 𝑝_𝑙𝑒𝑛𝑔𝑡ℎ𝑘= ∑ (𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑖 ∗ ( ∑ 𝑥_𝑐𝑜𝑟𝑒𝑖,𝑔

𝑔∈[0,𝑐−1]

)

𝑖∈V’𝑘

+ 𝑔𝑝𝑢_𝑢𝑡𝑖𝑙𝑖 ∗ ( ∑ 𝑥_𝑔𝑝𝑢𝑖,𝑔

𝑔∈[0,𝑐−1]

))

+ ∑ (𝑒𝑑𝑔𝑒_𝑡𝑖𝑚𝑒𝑗 ∗ 𝑦_𝑐𝑝𝑢𝑗

𝑗∈E’𝑘

) 

(9) 

The longest of these execution paths is the critical path of the DAG, the length of which represents the total 

execution time of the model on the target platform. We use 𝑝_𝑙𝑒𝑛𝑔𝑡ℎ_𝑚𝑎𝑥 to denote the execution time of the 

longest execution path, where ∀𝑘 ∈ 𝑃:  𝑝_𝑙𝑒𝑛𝑔𝑡ℎ_𝑚𝑎𝑥 ≥ 𝑝_𝑙𝑒𝑛𝑔𝑡ℎ𝑘 . Therefore, the objective function of the ILP 

formulation, which aims to minimize the length of the critical path to reduce the execution time of the model, 

is: 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒑_𝒍𝒆𝒏𝒈𝒕𝒉_𝒎𝒂𝒙 (10) 

4.5 Constraints 

The constraints for the core assignment problem are defined as: 

• Each node shall be assigned to only one CPU core or GPU:  

∀𝑖 ∈ 𝑉: ∑ 𝑥_𝑐𝑜𝑟𝑒𝑖,𝑔

𝑔∈[0,𝑐−1]

+ ∑ 𝑥_𝑔𝑝𝑢𝑖,𝑔

𝑔∈[0,𝑐−1]

= 1 (11) 

• If 𝑡_𝑔𝑝𝑢𝑖 is assigned to a GPU, the nodes preceding and succeeding to 𝑡_𝑔𝑝𝑢𝑖 shall be assigned the same 

CPU core:  

∀𝑖 ∈ 𝑉_𝑔𝑝𝑢, 𝑔 ∈ [0, 𝑐 − 1]: 𝑥_𝑐𝑜𝑟𝑒𝑡_𝑔𝑝𝑢_𝑓𝑟𝑜𝑚𝑖,𝑔 + 𝑥_𝑐𝑜𝑟𝑒𝑡_𝑔𝑝𝑢_𝑡𝑜𝑖,𝑔 ≥ 2𝑥_𝑔𝑝𝑢𝑡_𝑔𝑝𝑢_𝑖𝑑𝑖,𝑔 (12) 

• To utilize all cores and GPUs given in the proposed, we set a lower limit to 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑝𝑒𝑔 : 

∀𝑔 ∈ [0, 𝑐 − 1]: 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑝𝑒𝑔 ≥ 1 (13) 

• To assign nodes to each PE in a balance manner and avoid the proposed formulation from 'no solution' 

result, we set a upper limit to 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑝𝑒𝑔  and a user-given 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , which we set to 1.5 in our 

experiments: 

∀𝑔 ∈ [0, 𝑐 − 1]: 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑝𝑒𝑔 ≤ 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑡𝑜𝑡𝑎𝑙/𝑐 ∗ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  (14) 

5. Execution Code Generation 

The proposed LIP formulation is implemented by Optimization Programming Language [21]. Firstly, based on 

the assignment solution, 𝑦_𝑐𝑝𝑢𝑗 determines whether the two nodes connected by an edge are placed on two 

different CPU cores, and we can locate the corresponding signal lines in the model block diagram. To reduce 

the size of data that is transferred between different CPU cores, we should firstly set the storage class parameter 

of these signal lines to 'ExportedGlobal'. 'ExportedGlobal' exports the data transferred by a signal line as a global 

variable [19], with which inter-core communication transfers only the necessary data instead of the whole input 

data. Next, we generate the sequential code of the modified model using Simulink Embedded Coder. We 

implement the host code of the model using POSIX Threads. We use the code generation method in [11] to 

generate POSIX threads for homogenous CPU cores. For each group of CPU core 𝑐𝑜𝑟𝑒𝑔 and 𝐺𝑃𝑈𝑔, we create 

one pthread and specify an independent core on the processor to execute it using pthread affinity. At the 

beginning of each pthread of CPU core 𝑐𝑜𝑟𝑒𝑔 , we firstly specify a GPU 𝐺𝑃𝑈𝑔  to execute all CUDA kernels 

launched in the pthread, and copy the image data in parameters of auto storage [19] in the sequential code to 

𝐺𝑃𝑈𝑔. Due to the code generation of Simulink Embedded Coder, the data in parameters of auto storage remains 
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unchanged during the execution of the sequential code, therefore, we only need to copy this data to GPUs once 

at the beginning of the pthread. We then copy the code of step function in the sequential code to each pthread. 

Based on the assignment solution, 𝑥_𝑐𝑜𝑟𝑒𝑖,𝑔  and 𝑥_𝑔𝑝𝑢𝑖,𝑔  determine to which GPU or CPU core a node is 

assigned, and we expand the node assignment solution to the assignment of Simulink blocks and subsystems. 

Then, for the pthread of each group of CPU core 𝑐𝑜𝑟𝑒𝑔 and 𝐺𝑃𝑈𝑔, we delete the codes of blocks or subsystems 

that are not assigned to CPU core 𝑐𝑜𝑟𝑒𝑔 and 𝐺𝑃𝑈𝑔 . At the end of each pthread of CPU core 𝑐𝑜𝑟𝑒𝑔 and 𝐺𝑃𝑈𝑔, the 

computation results in external outputs, which is generated from root outports fed by signals with auto storage 

in sequential code [19], are copied to CPU core 𝑐𝑜𝑟𝑒𝑔 from 𝐺𝑃𝑈𝑔 . User should add necessary functions to merge 

computation results from each core and generate the overall output based on their model design. As the number 

of GPUs is equal to the number of CPU cores in the target platform, concurrently launched CUDA kernels do not 

have to wait for available GPU resources during execution. For each atomic subsystem whose 𝑥_𝑔𝑝𝑢𝑖,𝑔 = 1, its 

forloop code is converted to a CUDA kernel using the method in [2]. After each CUDA kernels is launched, 

synchronization in the host code is necessary to ensure that the execution order of the generated code is 

identical to the Simulink blocks. If a signal line between two blocks is cut between two different CPU cores, we 

need to transfer the data of this signal line between the two cores [11, 12]. Since the storage class parameters 

of such signal lines are set to 'ExportedGlobal', we can build this communication behavior by passing the values 

of global variables generated from these signal lines. Besides, if this signal line is used to transfer the processed 

image data from 𝑐𝑜𝑟𝑒𝑖 to 𝑐𝑜𝑟𝑒𝑗 , we should (a) copy the image data in block signals of auto storage from 𝐺𝑃𝑈𝑖 

to 𝑐𝑜𝑟𝑒𝑖 , (b) transfer the image data in block signals of auto storage to 𝑐𝑜𝑟𝑒𝑗 , and (c) copy the image data in 

block signals of auto storage from 𝑐𝑜𝑟𝑒𝑗 to 𝐺𝑃𝑈𝑗 . Note that such inter-core communication of image data is 

rather heavy, and can be avoided by the proposed ILP formulation. 

6. Evaluation Experiments 

6.1 Experimental setup 

To evaluate our approach we implemented image processing algorithms in Simulink models and parallelized 

thems on a platform of homogeneous multicore CPU processors and GPUs. The implementation of models and 

code generation were done in MATLAB 2017a MBD environment. The target platform for the evaluation 

experiments consisted of two cores of a 4.00 GHz Intel i7-6700k CPU and two TITAN X (Pascal) GPUs. The ILP 

formulations of parallelizing these models were implemented to executable model files in Optimization 

Programming Language, and we used IBM ILOG CPLEX Optimization Studio 12.7.0.0 [21] to solve the 

formulations. The acceptable upper time limit of CPLEX execution was set to 5 hours.  

In the implementation of the image processing algorithms in Simulink, the image data were read and stored to 

workspace in the initfcn of the models. The size of input image was 4872*2824, which was close to the buffer 

size limit in MATLLAB Simulink 2017a environment. The models in our experiment were: 

• Sobel_edge: this model performs grayscale reconstruction and edge detection using Sobel operator [16] on 

the input image, and merges the edged image with the original image.  

• Color histogram(CH): this model extracts color data of each pixel and equalizes them to a close range based 

on the histograms of each color space [16]. 

• Adaptive histogram equalization (AHE): this model partitions the input image to 8*8 sub-images and 

redistribute the lightness of the input image based on their histograms. We used foreach subsystem to 

implement the repeated processing. 

6.2 Speedup Performance 

We parallelized the models of image processing with the proposed approach and executed the generated CUDA 

C codes on the target platform. We recorded the average times for executing these codes. Fig. 4 shows the 

speedup performance of these image processing models implemented on the target platform, where speedup 
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metric is the ratio between the average execution time of sequential C code executed on only one CPU core, 

and the average execution time of CUDA C code executed on the platform of two CPU cores and two GPUs. 

 

Fig. 4 Speedup performance of parallel codes generated by the proposed approach 

The results show that the execution with GPU achieved a speedup between 8.78x and 15.71x as compared to 

sequential C implementation on only one CPU core. Using GPU to accelerate the execution of image processing 

blocks it is possible to reduce the execution time of the whole model while parallelizing other blocks on CPU 

cores for workload balance. The experiment results demonstrate the speedup of Sobel_edge is comparatively 

higher than in other models. This is because Sobel_edge copies the modified image data from GPUs only once 

in each pthread. Conversely, the speedup of CH and AHE is limited because all execution paths on the DAG of 

CH and AHE model have the same length. Especially, as AHE uses foreach subsystems to repeat the histogram 

equalization on each partitioned image, the histogram of each partitioned image is transferred from GPUs to 

CPU cores after each execution path is executed. Even though the generated histogram data, which is a 1*256 

matrix in the AHE model, is small in size, the frequent transfer significantly slows the execution of AHE model. 

To gain more insights on the efficiency of the proposed approach we implemented these models with other 

methods and executed them on the target platform. We present the speedup of these implementations in Table 

1, where Target platform denotes how many CPU cores and GPUs are used to execute the implementation. For 

2 CPU cores + 2 GPUs the model was parallelized with the proposed approach. For 1 CPU core + 1 GPU we used 

the sequential C code of the model as the host code and simply converted the atomic subsystems of image 

processing to CUDA kernels using only one GPU to execute all of them. For 2 CPU cores we used the method in 

[11] to generate parallel code for execution on homogeneous multicore processors. 

Table 1. Speedup of implementation with the proposed approach compared to other methods. 

Model Target platform Average speedup 

Sobel_edge 

2 CPU cores + 2 GPUs 15.71 

1 CPU core + 1 GPU 13.14 

2 CPU cores 1.22 

CH 

2 CPU cores + 2 GPUs 12.26 

1 CPU core + 1 GPU 9.36 

2 CPU cores 1.33 

AHE 

2 CPU cores + 2 GPUs 8.78 

1 CPU core + 1 GPU 5.77 

2 CPU cores 1.53 
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As shown in Table 1 the execution of CUDA C code with the proposed approach has over 1x speedup compared 

to other methods. As the proposed approach is based on MBD methods in [11, 12], it stipulates that GPU can 

only be used to accelerate the image processing on large amounts of data and the rest of the model are 

performed on CPU cores. This leads to a lower speedup of the proposed approach for MBD than the typical 

GPU implementions in [15, 16]. 

7. Conclusion 

In this paper, we addressed a model-based parallelization approach based on ILP to parallelize Simulink models 

of image processing algorithms to homogeneous multicore CPUs and NVIDIA GPUs. We use ILP-based 

optimization method to assign blocks and subsystems to GPUs and CPU cores for the minimized execution time 

and generate CUDA C code of the models for execution on the target platforms. We implemented image 

processing algorithms with Simulink, and parallelized the models with the proposed approach. On execution of 

the generated codes, we experimentally demonstrated that the proposed approach achieves a reasonable 

speedup over implementations with existing methods. 

As future work, we predetermine to reduce the manual work in the proposed approach, and visualize the 

execution of the model on the target platform. This can help model designers to understand how their model 

is executed in parallel on the target platform. In addition, we plan to introduce general principles of optimizing 

CUDA application [15] to the proposed approach. Such optimizations accelerate the application execution by 

optimizing the kernel codes, and depend on the input model separately. Moreover, we intend to expand the 

proposed approach to solve the parallelization problem for different CPU cores sharing GPU resources, where 

the number of GPUs is less than the number of used CPU cores. In this situation, CUDA kernels launched by 

different CPU cores wait for available GPU to be executed, so that the execution delay of pending kernels needs 

to be considered in the parallelization. 
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